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Preface

Mastering the complexity of innovative systems currently looks a challenging goal
of design and product development as well as embedding a suitable degree of
smartness in devices, machines, and equipment to make them able of adapting their
operation to variable conditions or effects of a harsh environment. This goal is
achieved through a continuous monitoring of the system in service, an effective
control of its behavior, and a wide connectivity toward many other systems. Only
an effective system design and manufacture, able to cover all the required actions,
can assure this kind of assessment overall the life cycle since a very early concept
of the product to a full disposal and service.

Complexity makes hard managing the product development, because of the
number of functions, subsystems, components, and related interfaces usually
involved, like in motor vehicles, robots, railway systems, aircrafts, and spacecrafts
as well as in large industrial manufacturing systems or very innovative microsys-
tems and bioinspired devices. A crucial issue in this activity is performing a bright
and complete elicitation of requirements, which need to be fully and suitably
allocated to the system components, through a clear traceability, especially in
systems produced as a result of material processing and assembling of parts.
Moreover, the product must fit the requirements associated with some customer
needs, innovation targets, and technical standards and be compatible with the
manufacturer’s capabilities.

As it looks clear from the current state of the art, since several years, the Systems
Engineering assures a suitable answer to the needs above mentioned. It provides a
methodology to drive the product lifecycle assessment that is implemented through
a well-defined process, being based on some specific and graphical languages and
even formalized in several tools enabling the required analyses, taking advantage
of the capabilities of some dedicated commercial software. Those contents lead to
create a platform, consisting of a sort of tools chain, which might be used and
shared among different industrial and professional partners to digitalize both the
information and even the whole industrial product development, as far as the
current strategy referred to as “Industry 4.0/The Factory of the Future” brightly
suggests and supports. The so-called Model-Based Systems Engineering (MBSE) is
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then successfully proposing an effective and modern alternative to the
document-based approach, using data models as a main element of the design
process. Some technical standards already drive the user in implementing the
Systems Engineering, thus leading to develop a systematic approach the design
aimed at satisfying the customer needs. Suitable capabilities in the manufactured
system are assured by the so-called architectural frameworks, which support the
system development and integration.

The Model-Based Systems Engineering allows proceeding with a modeling
activity which investigates requirements, behavior, and architecture through a
combined operational, functional, and logical analysis, being linked and interop-
erated with a mathematical and physical modeling, which is typically more known
and widely used within the industrial engineering. A full integration of all the
activities of the Product Lifecycle Management (PLM) is currently going on, to
include the system architecture definition and its Application Lifecycle Management
(ALM) as well as the Product Data Management (PDM), i.e., the design activity
together with the tasks of production, testing, homologation, and service.
A recognized standard certification to qualify the Systems Engineer is even avail-
able as the International Council on Systems Engineering (INCOSE) provides.

The scenario above described is strongly integrated with the increasing devel-
opment of both the network and the cyber-physical systems, for a fully distributed
connectivity, to be exploited in advanced smart systems and devices as well as in
intelligent manufacturing, according to the most recent strategies of innovation as
the “Industry 4.0” initiative and the “Lean manufacturing” idea. Simultaneously,
the system smartness and connectivity together increase the demand of data
transmission and elaboration, thus linking this topic to the technology of big data
management, while they benefit of the progress in information technology, through
a secure cloud based on the network.

The context just described motivates the fast diffusion of the Model-Based
Systems Engineering as a tool for innovating all the production processes. The
increasing demand of specialized software and of educational activities as well as
the number of workshops and conferences focused on this topic confirm this trend.
However, it might be remarked that several contributions to the literature about the
Systems Engineering widely grew up during the last years, thus making the Reader
sometimes confused, especially when approaching this topic at first.

The Systems Engineering topics are so many that it looks rather difficult mas-
tering its skills, without a preliminary classification of contents. Technical domains
involved are mainly those of engineering and computer science, although many other
ones play the role of a daily user of this methodology. According to the most recent
development of the Systems Engineering, whose typical application fields were the
software and electronic systems even for space missions, the current focus consists of
several industrial systems, being gradually innovated by introducing the tailored
solutions of mechatronics. It is worthy noticing that a significant advancement was
introduced between the very early implementation of the Systems Engineering
and its recent evolution, since several new applications are focused on the production
of systems, which need to be manufactured through a material processing.

viii Preface
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Usually, they exhibit some attributes related both to their physical nature and to the
functions performed, thus requiring to model both their functional and physical
behaviors together. This need is changing the scenario of the typical applications
of the Systems Engineering as software design.

This handbook expressively avoids to cover all the typical contents of the
specialized literature of the Model-Based Systems Engineering, while is aimed at
making easier a first approach to this topic and sharing a preliminary experience
performed by the authors within some industrial domains, by proceeding in the
modeling activity in a real industrial environment. The main goal is drawing a sort
of simple and hopefully clear roadmap in modeling and developing the industrial
and material systems and in implementing the Systems Engineering, particularly in
the design activity. Therefore, the target audience of this handbook includes pro-
fessional engineers, scientists, and students dealing with the ALM and the system
architecture assessment, more than the PDM or the whole PLM.

The approach followed is that of introducing some examples of implementation
of the Systems Engineering, by proceeding step by step from the screening of needs
and the elicitation of requirements till a synthesis of the system design. Each action
will be referred to the literature, related to the implementation of the Systems
Modeling Language or SysML and to the use of some tools available on market,
thus highlighting benefits, drawbacks, and current limitations of some dedicated
software or even of some proposed methodologies. Several comments will be
provided to describe the troubles shared among some users of the Systems
Engineering as they were detected in daily practice by the authors. They wish that
this handbook could briefly and gradually provide the Reader with a preliminary
guideline to approach professionally the Model-Based Systems Engineering, by
understanding its main contents and applying it to the industrial environment. As a
desired result, this work might be considered as an integration of some textbooks of
Machine Design, and it is aimed at completing the education within Engineering
Design or at simply providing a friendly introduction to the Systems Engineering.

Turin, Italy Eugenio Brusa
Magdeburg/Erlangen, Germany Ambra Calà
Turin, Italy Davide Ferretto
December, 2017
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Chapter 1
Introduction

Abstract The literature about the Systems Engineering are so wide that one might
feel lost in reading. Realizing the context where this methodology is introduced and
currently refined might help in mastering its main contents. This introduction briefly
describes the approach proposed in this handbook to introduce the topic, through a
linear rationale, developed through the chapters, and by means of a couple of
examples, aimed at simplifying the understanding.

1.1 The Industrial Context

Designing a product which exhibits a large number of capabilities and skills defi-
nitely requires to conceive a real system, meant as an assembly of different sub-
systems, components and parts, highly integrated and fully interacting each other
through several kinds of interfaces. Functions performed by the system are usually
the result of an ordered sequence of activities made by each component or sub-
system, or even by more than one, to achieve a defined goal. Nowadays the number
of functions exploited in a system might be fairly large. This leads to involve many
components thus needing a number of interfaces.

As a matter of facts, a growing up complexity related to the design, production
and management in service of systems has to be faced and managed. Strictly
speaking, the designer should conceive in details the expected behavior of the
system and its architecture, to fulfill a clear and complete list of requirements, by
brightly mapping the associations among requirements, functions and material
components to assure the highest simplicity, safety, reliability and maintainability,
with the lowest cost, the highest quality and the minimum number of parts inter-
faced. Key issues of this activity are the elicitation of requirements, the selection of
the most suitable technology for the identified tasks, the trade-off among some
candidate architectures and the early prediction of suitable verification and vali-
dation processes, usually based on testing and prototyping aimed at system
homologation before delivery. Design must fit all of customer needs compatible
with technical requirements and deal with the safety, manufacturing, maintenance
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and service issues, through a consistent and predictive analysis of cost, risk and
quality. Moreover, a straight coherence between the design and production of the
system development is required to achieve the desired result.

Engineering the systems is definitely nothing new, but nowadays it looks
extremely hard in safety critical systems, where the complexity above mentioned
plays a relevant role. System design can exploit a long tradition, as documented in
the technical literature, within the available technical standards or guidelines and
even in the daily practice of several companies, which belong to a wide range of
technical and industrial domains. Some of those companies are specialized within
several methodologies of systems development and integration, like the aerospace
and nuclear engineering, for instance. However, it is true that the early stage of
systems definition, including the design requirements and conceptual activities, was
based for a long time on few documents, being somehow separated from the models
of the detailed design, where size, configuration and integration tasks were per-
formed. Practically speaking, requirements, functional and numerical analyses are
often performed by different people, generally through different tools and data are
stored in some separated repositories, thus being only partially shared among those
persons. This turns out into a severe limitation in innovation, efficiency and cost
reduction.

1.2 Goals of This Handbook

The so-called Systems Engineering allows facing several issues related to the
product development all along its lifecycle, when its complexity is high. However,
a wide literature describes its contents, but a straight implementation might be
difficult for a number of reasons.

Systems currently produced belong to several fields of technology.
A preliminary distinction can be considered between software and hardware, e.g.
industrial systems like electronic devices, mechanical and mechatronic systems.
These are real objects coming from a material processing, being assembled and
integrated. Rules and criteria for design and production are therefore related to the
manufacturing process. Moreover, it might be immediately noticed that a system
can be focused on the management of either data (generation, transmission,
reception, elaboration and storage), thus leading to the treatment of signal, or
energy (generation, transmission, conversion and storage), and dealing with dif-
ferent kinds of power. The first option is typical of the software engineering and
computer science, where data management is a main goal of the system operation.
Both of the above mentioned options are quite typical of electronic, mechatronic
and mechanical hardware and their related technical domains. Power management,
in particular, is a key issue for motion, dynamics, control and to produce work.

Realizing that the above mentioned differences hold allows the Reader easily
understanding some current limitations in language, tools and software proposed for
the Model Based Systems Engineering, which was originally conceived for the
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software engineering more than for other industrial products, even quite popular
like the aerospace, automotive, manufacturing and other specialized sectors. In
following sections this issue will be clarified and pointed out in several steps.

To better entering this topic it may be immediately perceived that the literature
develop several items of interest under the common title of Systems Engineering,
strictly related to its implementation. First at all the approach and the related
methodology has to be mastered, but even the languages (as the Unified Modeling
Language or UML, the Systems Modeling Language or SysML or newer ones as
the Industrial Modeling Language or IML, which has been more recently pro-
posed). However, the language has to be distinguished from the tools and the
software expressively developed to implement the approach, which are even related
to the method and the process applied to develop the digital models of the product
itself (or, sometimes, of the whole lifecycle development). In some cases it might be
realized that the methodology looks mature for some foreseen applications, while
some tools or software need to be further assessed. Therefore, a certain effort will be
spent in following sections to make the Reader aware about the different contents of
this subject on which several contributions of the literature are focused.

By the way the power of the Systems Engineering is that it demonstrated to be
suitably applicable to several industrial domains with high level of confidence and
few differences in some tailored tasks, basically following a common generalized,
intrinsically systematic and effective approach. Moreover, since longtime, the
design activity was performed starting from a very preliminary concept of product,
often based on documents, while approaches like the Model Based Systems
Engineering provide the tools to transform those documents into models, which are
currently digitalized and linked to the numerical analyses, used in an advanced step
of product development. Main benefits of this approach are the reusability in dif-
ferent projects, the traceability of each requirement, being allocated to functions
and system components as well as the automatic documentation of the whole
product development activity. Understanding those issues and how they are prac-
tically assured in operation by using the tools of the System Engineering is a key
goal of this book.

A final critical issue is the standardization of the Systems Engineering process
and tools. This is a priority of the approach to assure a common definition of the
so-called ontologies, in several technical domains, and a full interoperability of
software tools, eventually through some dedicated connectors. This topic will be
herein faced and detailed as far as the current state-of-art allows.

1.3 Test Cases and Implementation of Tools

Two practical test cases will be proposed to show the Reader how all of those issues
may be found and faced as soon as a real implementation of the Systems
Engineering is performed. To allow proceeding step-by-step, two main levels will
be considered. A sort of simplified and somehow didactic example consists of the
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description of a rotor on active magnetic suspension either used to coil the wire rope
in steelmaking, as it was really proposed to a manufacturer, or to support a flywheel
energy storage system. In this case models will be intentionally quite simple to
preliminary introduce some topics and procedures, although they reflect a real
industrial application with all of relevant implications and practical problems.
However, to give an impression of some critical issues in implementing the Systems
Engineering in a real complex system, as an aircraft, the case of an ice protection
system will be developed, as it is currently carried out by the manufacturers. In this
case the depth of information shall be larger, to show some crucial decisions made
to integrate methods and processes of different industrial partners and suppliers.

The didactic test case looks interesting to investigate a mechatronic application
as the control of a spoiling system for the steel wide rod connected to a rolling mill.
This example includes several issues related to the active control of structural
systems, combined with the connection to a complex system like the steelmaking
plant is. Moreover, some key issues of the smartness of new systems will be
introduced and discussed as well as the relevant item of safety in industrial systems,
which requires suitable actions of alarm and warning. Problems related to the
hierarchy of control between master and slave systems or even between the operator
and the system itself will be briefly explored.

The example concerning an ice protection system for a civil aircraft for pas-
sengers’ transportation provides an overview on the integration of a mechanical
subsystem within a main system, being operated in presence of quite variable
environmental conditions, as are those related to the atmospheric flight. In this case
the tight collaboration between functional and physical models will be investigated
as well as their intrinsic interoperability.

Both those examples will be developed by resorting to some software tools
available on the market and currently used in the Model Based Systems
Engineering practices for the implementation within some industrial domains.
Thanks to the availability of IBM and PTC who kindly authorized the use of their
software tools for this publication, it could be possible including some results of the
development of the test cases through the IBM Rational Doors® and Rhapsody®

and the PTC Integrity Modeler® (formerly Artisan Studio® by Atego) to show the
Reader the practical result of such activity. The above mentioned examples will be
used to explore some interoperability issues, to connect those tools to other ones,
like the MATLAB®, Simulink® or Modelica®, and to perform a preliminary
dynamic analysis. The concept and the practical development of the so-called
heterogeneous simulation will be herein analyzed. Moreover, both the examples
show a high safety critical nature, to be widely and carefully considered within the
product development as it will be herein discussed.
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1.4 Structure of the Handbook

To reach the above mentioned goals, chapters and sections of this handbook will be
mainly focused on a practical investigation of methods, processes, tools and criteria
applied to:

• The elicitation, allocation and traceability of Requirements.
• The development of the so-called Functional modeling, which is aimed at

including the operational, functional and logical analyses.
• The development of so-called Physical modeling, based on a mathematical

modeling of systems and a numerical analysis, providing a simulation envi-
ronment where the system behavior is investigated.

• The overall interoperability of those models, with a overview on heterogeneous
simulation techniques.

• A preliminary description of the verification and validation of the systems.
• Some outlines about the strategic issues related to the integration between

design and production, namely Application Lifecycle Management (ALM) and
Product Lifecycle Management (PLM).

• A brief highlight on the Configuration Change Management as it is currently
implemented through the available tools.

According to the Authors, this path might assure a gradual exploration of the
proposed topic, being quite linear to be followed step by step, within the limitations
of the very preliminary screening of this subject performed by this handbook.

1.4 Structure of the Handbook 5
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Chapter 2
The Systems Engineering

Abstract Many definitions of the Systems Engineering are proposed, and ana-
lyzing some differences between them help to highlight contents and open issues, as
they are described in this chapter. Nevertheless, a short historical outline could be
helpful in appreciating some characteristics of this methodology, which are even
more detailed by a wide literature, herein briefly described. Furthermore, an
overview of technical standards dealing with the Systems Engineering is added, to
define a roadmap for a deeper education in this field.

2.1 A Definition in a Nutshell

If one reads the definition proposed by the International Council on Systems
Engineering (INCOSE), this interdisciplinary approach is described as “a mean to
enable the realization of successful systems” and “focuses on defining customer
needs and required functionality early in the development cycle, documenting
requirements, then proceeding with design synthesis and system validation while
considering the complete problem”. Moreover “it integrates all the disciplines and
specially groups into a team effort forming a structured development process that
proceeds from concept to production to operation”. It “considers both the business
and the technical needs of all customers with the goal of providing a quality
product that meets the user needs” (Walden, 2015).

The above and precise definition probably is the fastest way to describe at least
the most important contents of the Systems Engineering (in the following simply
SE), which doesn’t substitute all the techniques of engineering the systems in a
more general meaning, but provides new means to do this by following a more
systematic approach. It can be immediately realized that some highlights are
characteristic of the proposed approach and even cited by the above definition.
Object of design must be a system, being naturally based on the interaction among
different components, to be assembled together and connected. Success of product
developed is directly related to the customer satisfaction, although suitable metrics
to measure that satisfaction have to be defined. Product must provide only functions

© Springer International Publishing AG 2018
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strictly required, since its conceptual design, i.e. very early in the whole devel-
opment path. A clear sequence of operations in development is suggested, thus
starting from requirements, to define the design contents till the synthesis, being a
first intermediate goal of the whole activity. Validation is then proposed as a
necessary step to investigate how much the product fits the customer needs. This
interpretation leads to the description of a process, from concept to operation, being
referred to as structured, i.e. fairly well defined to be linear, repeatable and effec-
tive, and strictly oriented to quality and to the user. Moreover, the two main worlds
of technology and business are both considered, thus suggesting the need for a clear
modeling the technical contents as well as the business foreseen for that product.

Despite of the brightness of sentences, implementation of the SE is never so
straight, especially in the hardware domain. It might happen that the real contents of
those sentences are poorly understood, if the Reader doesn’t know some goals
which motivated the creation of the SE and some principal pillars of this approach.
Screening those two issues may help in implementing it more easily.

2.1.1 Main Goals

Nowadays systems conceiving, designing, developing and integrating are all key
strategic goals of the product development, especially in industrial manufacturing,
when a direct material processing technology is exploited. Practically speaking,
some needs could be detected.

Suitable tools for handling complexity. Product is today a system of sub-
systems, components and parts, and often embeds some kind of smartness and
some capability of communicating. Consequently the number of functions exploited
is increasing, together with the number of interfaces. As an example, one may think
about electronic control units and sensors, which are often applied to mechanical
and electromechanical elements, thus creating a full mechatronic product. It has to
be manufactured through the contribution of several technical competences and a
suitably design of each energy conversion exploited by the system has to be per-
formed. This leads to a certain complexity, poorly manageable through the tools
widely used in the past.

Traceability over the whole lifecycle. Nature of new products intrinsically
requires a longer support after delivery, to perform monitoring, maintenance and
control, and to assure a regular service. Cost might grow up fairly fast for the
manufacturer, if the whole Product Lifecycle Development is never completely
considered to clearly foresee all the actions due after market. Only a clear trace-
ability in the development (from requirements to part numbers) of both the product
elements and functions, seen as a direct result of the allocation of requirements,
could allow covering the system lifecycle.

Models creation, digitalization, reusability and automatic documentation.
A deep, complete and shared documentation is needed to make aware all the users
and the operators about the details of the system operation, maintenance and even
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failure. This task is required to consolidate the “know-how” of the manufacturer,
managing the turn-over of people, but even to support the user in service.
Moreover, documentation and data should be recovered, collected and shared
through a unique data management system, with dedicated repositories, controlled
access to data bases under high security standards. This requires a preliminary
digitalization of the information, then a network of connections, as well as an
efficient data elaboration. Models, instead of pure documents, are easily reused in
new products or versions of the same system, shared and stored as well as
embedded in different documents to be automatically produced. These documents
and models can be shared among operators of the same company when developing,
but even together with suppliers and customers to enhance the activities of
acquisition together with service and maintenance in operation.

Reducing costs of the system development, human mistakes, and late
re-engineering activity. The SE is so widely growing up within the industrial
world because of its effectiveness in handling some multidisciplinary engineering
projects, by decomposing the complexity of systems, but even thanks to the
so-called “left shift” in the resources consumption over the lifecycle.

As Fig. 2.1 shows, if one describes the resources usually spent for each step of
the project to develop the system, conceptual stage covers a small percentage of the
total cost, while tests, production and final assessment to disposal are fairly
expensive. By converse, the SE tends to improve the efficiency of the early steps of
development by increasing significantly the resources applied, by already consid-
ering for each element of the system the required test, production and assessment
needs, to prevent the risk of a late detection of defects which might require a
complete re-engineering, thus causing a demand of a huge amount of resources,
being several times those already spent at that time, during the development.
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Fig. 2.1 Comparison between the usual distributions of the percentage of total costcovered for the
system development and that proposed by the SE (Defense, 2001)
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In this description a peak in costs occurs earlier in the project development and
in time, but several costs usually foreseen for the late steps are anticipated.
Therefore the peak is somehow shifted to the left side along the time axis, thus
motivating the typical expression above mentioned. It can be remarked that a deeper
conceptual activity might help in discovering problems before that any prototype is
manufactured. Moreover, since the largest amount of money is spent in the early
part of development, decisions are driven by a number of analyses, and, usually,
lead to avoid a trial and error approach, typically more expensive and randomly
effective.

Those needs actually are strictly related to some typical goals, as the design for
safety and the quality in production, but they could be even associated to a bright
process of change configuration management and to the two activities of verifi-
cating the requirements and validating the system, respectively.

In practice, the SE helps in decomposing the complexity of the problem in
several issues and somehow in different views, thus exciting a careful activity of
concept design and a complete elicitation of requirements. In addition, integrating
all the models which might be used to describe and analyze the system in a same
virtual platform improves their correlation and helps to create a holistic perception
of the whole system. Models allow defining a rationale to be reused and assessed
through different projects and driving the product designer through several tasks,
thus making easier to account for all the required steps.

Some problems of intrinsic safety of product might arise in presence of a number
of subsystems and components, if failure modes, causes and effects cannot be
effectively predicted. Moreover, detecting clearly and fast any correlation between a
failure occurring into a designed part and a requirement which motivated its
inclusion within the overall system architecture is often rather difficult. Finally
system prognostics, diagnostics and reliability can be effectively provided only
through a clear monitoring of events. Therefore, the SE tools help in the safety
analysis development, by showing how requirements, functions, components and
parts are linked each other within the system architecture, thus making the trace-
ability of requirements clear. Simultaneously, some issues of the so-called func-
tional modeling allows defining actions, actors and relations, thus allowing to
describe failure modes through a simple negation of those items. Designing an
effective monitoring system to be applied to the product is never trivial and the
availability of operational, functional and architectural analyses provided by the SE
might enhance this skill as well as a more detailed numerical simulation.

It is important to remark that the SE somehow fills the gap between the overall
“Project management”, dealing with the organization and the development of the
project, being interpreted as the set of activities leading to the realization of
products, and the “Design” which is strictly, and almost only, related to the defi-
nition of the product elements through some dedicated and focused actions. It
defines the needs to be satisfied, but even performs the technical trade-off among
some candidate layouts, dealing with the whole system as well as with the smallest
components, providing their integration, first through the design stage, then thanks
to the manufacturing process and even after.

10 2 The Systems Engineering
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2.1.2 Four Pillars

As soon as the Reader will briefly consider the wide literature already available
about the SE, probably an immediate feeling of shipwreck could arise because a
number of books, guidelines, handbooks and also some Standards could be helpful,
but very often they are focused on extremely different subjects. As usual in
mechatronics, it might be remarked that SE involves many disciplines and each
author is prone to explore the contents more familiar, focusing on a portion of the
whole topic. Roughly speaking, it might be realized that four are the main areas of
interest usually explored in the literature: methodology, language, tools and data
management.

The methodology. Describing the methodology proposed by the SE looks often
rather difficult without a bright roadmap as it was proposed by Estefan (2008). The
methodology applied by the SE is based on digital models, easily shared within a
community of users and easily stored by a data management system. This main
property leads to define the SE methodology as a “model-based” approach or
Model-Based Systems Engineering (MBSE). Two main models are developed, the
first one drives the system engineer through the product development and concerns
the product life cycle, while the second one describes both qualitatively (only by
logic) and quantitatively (by numbers) the product itself, being the complex system.

Several reference models were proposed in the literature to define the product
life cycle development. They are basically an ordered and rational list of interlinked
steps to be performed in engineering the system. It might look as a quite obvious
task of the whole design activity, but defining both the goals and the sequence of
actions to be performed, as well as how they are mutually linked or even connected
to the manufacturing process is crucial. Facing the problem of designing the system
by either considering first the whole product and its requirements, then by
decomposing it in components through a sort of top-down approach, or proceeding
from the single component to the whole system through a bottom-up approach, was
a matter of discussion. How the ALM and PLM actions could be suitably inter-
related step by step, thus creating the traceability above mentioned was even deeply
investigated.

As a relevant result, the MBSE currently provides a sort of checklist for the
product developer and helps in handling some practical difficulties associated to the
different levels of the system architecture and to its complexity. Particularly, on this
assessment of the methodology two main issues were defined as the process itself,
being focused upon the action to be performed in a due sequence through a logical
path, and the method. Practically speaking the process defines what the system
engineer must do and the method how to proceed.

The implementation of the process through the method includes the real product
development whose object is the system. Therefore the modeling activity directly
applies to it. Basically, the system functionality is first analyzed, through the
functional modeling, to allow the allocation of requirements, then the performance
of the system is predicted by the physical modeling. If the physical modeling is
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www.manaraa.com

based on some mathematical description of the system behavior and its language
coincides with mathematics, the functional modeling for long time did not have an
effective mean of expression, like equations are for numerical models. Nowadays
some languages support the modeling of functions, behavior and structural layout of
the system, which can be represented before than it could be detailed, for instance
into a technical drawing. Moreover, to create a functional model, some standard
tools are required, which might be understood by all the users involved in the
product development.

The tools. Actually two kinds of tools allow implementing the MBSE approach,
consisting in some theoretical tools, like several typical diagrams and some
engineering methods, and in the software providing a digital and virtual environ-
ment where the MBSE methodology can be implemented through some standard
language.

The language. Dealing with a complex system inherently means often involving
many technical competencies. To establish a fruitful cooperation, a common ter-
minology, or better a tool which might be easily understood and applied by all the
developers of a same task, is required. To reach this goal, a fairly intuitive language
based on a standard set of symbols and items could be found. In case of the SE,
some examples are available. A prevalent tradition comes from the Unified
Modeling Language (UML), which was then adapted and enriched for this purpose
as the System Modeling Language (SysML), but even other ones are currently
developed to overcome some limitations of those languages, particularly when
applied to the industrial product manufacturing.

The data management. The information and the data storage are both critical
issues of the SE. They require a careful design of a common environment, including
hardware and software, to which all the authorized users can access, allowing the
tools being interoperated, i.e. data can be automatically transferred from one tool to
another one, without a direct action of the user. This common environment, to be
referred as platform, should allow producing, storing, sharing and elaborating all
the required data. The platform must be compatible with the needs of different users
and operators and with the software products used by all of them, to perform the
modeling activity and to develop some related services. The platform needs a
connection through the network, being based on a data bus, a cloud or other web
services. The so-called interoperability of software tools and the cyber security are
crucial issues of the platform building activity.

Those four pillars, as they were here above briefly defined, actually allow
interpreting the contents of several contributions proposed in the literature and even
some research activities currently performed within the MBSE. A clear rupture with
the past approaches, based on documents to support the system development,
consists in the model based approach, even fully digitalized nowadays. This is a
distinctive characteristic of the MBSE and motivates its current wide application.

By converse the standardization of methods, languages and tools is still under
assessment, although it looks a relevant goal for a complete diffusion and appli-
cation of this approach. The Reader shall surely appreciate in this handbook how
much tools and methods of the MBSE depend on the software currently available
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on the market, sold by several vendors. That’s the actual challenging issue for a
complete assessment of the SE. It is known that the different features exploited
within the software products lead to a specific implementation of the methods and
of the theoretical tools of the SE, according to some vendors’ interpretation. A good
standardization was already found in the system procurement, rather than in the
product development, being the core in transportation and defense domains. In
those cases, the product development is actually based on a complete definition of
the system capabilities, described through a set of standards views, which are built
up by resorting to the so-called architecture frameworks. These are another
important component of the MBSE.

Next chapters will analyze more in details the above mentioned concepts to
present the whole MBSE approach. Moreover, those key issues look useful for an
easier interpretation of the existing literature. Some main references will be herein
considered to start, although many others are available and published, whilst this
short handbook is composed.

2.2 Some Historical Notes

The Systems Engineering, as is currently known by professionals and scientists,
represents a convergence of several direct experiences performed by a number of
system developers in several technical domains. Therefore the roots of the SE
should be found definitely before than several theories and public references
appeared since the latest 90s. For sure, the technical challenge of designing inno-
vative and complex systems was typical of the fascinating story of the conquest of
space. This was related to a fast growth of the space systems as well as of elec-
tronics, computer science and communications. Therefore, it does not surprise that a
popular reference to learn the methodology of SE is the dedicated NASA handbook
(NASA, 2007), but the real birth of the SE dates since the World War II. At that
time clearly arose the need of managing some rather complex systems like aircrafts,
tanks, but even the army logistics. The SE was evenly relevant for the operations
research and decision analysis. During the 50s some preliminary references
appeared and were applied to space programs and intercontinental ballistic weap-
ons, thus promoting some methodologies to develop the systems (Systems
Engineering) and to assure the full accomplishment of the goals of technical pro-
jects (Project Management), together with an effective prediction of risk (Risk
Analysis and Management). Nevertheless, over the years, a bright necessity of
relating those three main competences was satisfied by creating a suitable corre-
lation through the SE.

After a first appearance of the concept of system in engineering within electric
power distribution and telephones, the SE began to be conceived as a multidisci-
plinary approach in the early 50s of twentieth century. Basically, three main topics
were related to the SE as the general theory of systems, the cybernetics and the
operations research (Arrichiello, 2014).

2.1 A Definition in a Nutshell 13
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In 1950 Ludwig von Bertalanffy identified in the “General System Theory”
(Bertalanffy, 1972) the need of investigating biological and technical systems not
only in terms of assembly of parts, but even for their mutual interactions as well as
those with the environment outside their neighboroughs, introducing the new
concept of open system. This immediately linked the theory of systems to the
growing up fields of the information technology and of the automatic control.

In the same time, Norbert Wiener introduced the concept of feedback, seen as a
possibility of adjusting the performance of systems by knowing their past experi-
ence, applying this idea to a new science that he called cybernetics, i.e. the control
and communication in animals and machines (Wiener, 1948). An additional
interesting issue of his theory was the introduction of the system behavior as a
fundamental goal of the investigation, in all the fields of science and technology.

Operations research added a substantial contribution to this new discipline,
during the World War II, as a mean to support decisions, then as a branch of
mathematics and statistics, although it involved physicians, engineers and other
scientists. That’s why Weaver (1948) observed that when several members of
diverse groups work together and create a unit, products are definitely greater than
those obtained by a sum of parts and focused the attention upon the system inte-
gration and to the holistic view of product development.

The above mentioned origins found a favorable context in the Cold World War
to grow up in projects like the Intercontinental Ballistic Missile (ICBM) and the
Semi-Automatic Ground Environment (SAGE). The scale of those systems, the
number of competences involved and the very challenging performances required
made this context a perfect test rig for the SE tools and methods. Few years later the
conquest of space and some programs like the Apollo missions finally brought to a
formal definition of the SE process.

This growth of the tools of SE motivates some typical characteristics, which
need today to be somehow updated and adapted to some other contexts like
transports, health care, smart manufacturing and mechatronics. To catch immedi-
ately the substantial and powerful contents of the SE, it can be said that it smartly
puts in evidence the three basic ingredients for an effective system design,
described by the Royal Academy of Engineering in 1999 as follows: “every design
process should begin from a clear defined need, should be performed through a
suitable vision aimed to give an effective response to the need and the delivered
product should meet the expectations of the customer, expressed by that need”. As
it will be herein explained, this simple process holds when the designer is aware
about the customer needs, plays a deep attention to requirements and to a precise
validation of product at the end of process. The SE helps the designer to consider
the whole system, its neighboroughs, the stakeholders and all the interactions
among them as well as among the system components and interfaces. In this
purpose some additional benefits are provided.

The SE approach teaches to follow a structured rationale, to identify a hierarchy
of items, to realize how the system behaves, to perceive the need of defining some
suitable metrics, to measure the performance and to model and simulate that

14 2 The Systems Engineering



www.manaraa.com

behavior, even through the merge of different approaches and tools might make the
simulation heterogeneous. The literature, the tools and the software basically give
this kind of information and help the user to follow the approach.

2.3 A Survey on the Literature About the Systems
Engineering

A key starting point to understand the SE is a brief survey upon some popular
textbooks, tools and standards, which nowadays constitute an appreciated reference
for the different topics above described.

A first issue concerns the approach and the processes applied. As a matter of
facts the most recent guideline about the SE including a fairly deep information is:

• David Walden, Garry Roedler, Kevin Forsberg, Douglas Hamelin, Thomas
Shortell—Systems Engineering Handbook of INCOSE, 4th Ed., John Wiley and
Sons, 2015

where a complete description of the approach, of its straight implementation
through some standard views and tools, respectively, is provided, after a deep
assessment performed by authors and contributors, over the years. It is significant
even for a professional certification, through the INCOSE, being a worldwide
recognized community for the systems engineers (see for instance the website
www.incose.org and the activities promoted by the sections).

This reference obviously covers a wide range of topics related to the SE,
although a relevant support for the application to the aerospace engineering is
given by:

• The NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev.1,
National Aeronautics and Space Administration, NASA, Headquarters
Washington, D.C. 20546, December 2007

which focuses on the technical domain of aerospace and is witness of the relevant
contribution given to the SE by this domain, since the edition:

• Robert Shishko—NASA-SP-6105 The NASA Systems Engineering Handbook,
NASA, June 1995

where the fundamentals of the SE were defined and detailed. Some concepts as the
flow of activities within the product development, the elicitation of requirements
based on the system goals, mission and operation scenarios are clearly stated. It
could be compared to:

• ESA-ESTEC (Requirements and Standards Division), Space Engineering
Technical Requirements Specification, European Space Agency (ESA)
Requirements and Standards Division Technical Report ECSS-E-ST-10-06C,
Noordwijk, The Netherlands

2.2 Some Historical Notes 15
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A deeper information about the process and the views of the MBSE could be
found in the popular reference:

• Systems Engineering fundamentals, the Defense Acquisition University press,
Fort Belvoir, VA, USA, 22060-5565, January 2001

being focused on the system acquisition process of the Department of Defense
(DoD) of the USA, thus representing the implementation of the SE within the
military domain, under the constraints of dedicated technical and military standards.
Very often the literature refer to the DoD approach, defined by the above cited
document, free and available on the web. It is crucial resorting to this kind of
support when the system development is strictly subordinated to a precise com-
mitment document for the acquirement, as it happens in case of the Army, Navy and
Air Force.

Those three references surely give a complete overview about the whole holistic
approach, but several authors proposed some deepened descriptions of the related
methods for an easier decomposition of the system and to face its inherent com-
plexity. Among the others:

• David Oliver, Timothy Kelliher, James Keegan—Engineering complex systems
(with models and objects), McGraw Hill, New York, 1997

• Alexander Kossiakoff, William Sweet, Samuel Seymour, Steven Biemer—
Systems engineering: principles and practices, John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2003

• Charles Wasson—System analysis, design and development: concepts, princi-
ples and practices, Wiley, 2nd ed., July 2015

could be appreciated for introducing a clear classification of goals, missions and
scenarios to deal with the requirements definition, the operational and functional
and analyses, then to the design synthesis, through a bright path of activities and a
driven decomposition of the system elements. This approach applies even to other
technical domains like the health care, some industrial and social applications,
including automotive, railways systems, smart cities and manufacturing.

It is worthy noticing that implementation in some cases is never so straight
because of a lack of experience or an imperfect management of this approach. This
difficulty is mainly found in the concept design and in managing the integration of
system in production, therefore it motivates an extended analysis of the SE man-
agement as it was performed in:

• Andrew Sage, William Rouse—Handbook of Systems Engineering and
Management, John Wiley and Sons Inc., 1996 and following editions

• Benjamin Blanchard—System Engineering management, Wiley, New York,
2004

A more integrated overview on the SE is provided by some other sources, either
by groups deeply involved in the SE education, application or service supplying or
even vendors of products for the SE. Among the most known there are:
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• Richard Adcock (ed)—Guide to the Systems Engineering Body of Knowledge
(SEBoK), The Trustees of the Stevens Institute of Technology, Hoboken, NJ,
USA, vs.1.3, 2014 (available at www.sebokwiki.org)

• Some references shared for free through the web by the Vitech Corporation
(www.vitechcorp.com)

A growing interest about the SE was shown by some important Society, like the
American Society of Mechanical Engineering (the ASME International), since the
appearance in the catalogue of publications of:

• Thomas Van Hardeveld, David Kiang—Practical Application of Dependability
Engineering: An Effective Approach to Managing Dependability in
Technological and Evolving Systems, The ASME Int., New York, 2015

where a detailed analysis of dependability and traceability of requirements within
the system design is proposed, by introducing several concepts about the product
lifecycle development, applied to the mechanical engineering.

Since a longer time the Institute of Electrical and Electronics Engineers (IEEE)
supports the information and the education within the SE through several contri-
butions, mainly based on some journals like:

• the IEEE Systems Journal of the IEEE System Council

However a specific focus on the SE is kept by the International Council on
Systems Engineering (INCOSE), through several means, even in connection with
other institutions or some firms, basically through the web, several publications and
conferences.

This activity already led to the introduction of a newer interpretation of the SE as
it was proposed more recently in terms of Lean Systems Engineering in:

• Bohdan Oppenheim—Lean for Systems Engineering with Lean enablers for
Systems Engineering, Wiley, 2011

• Josef Oehmen (Ed.)—The Guide to Lean Enablers for Managing Engineering
Programs, Joint MIT—PMI—INCOSE Community of Practice on Lean in
Program Management, Cambridge, MA, USA, 2012 (http://hdl.handle.net/1721.
1/70495)

Those references basically show a link between the strategic approach of the Lean
manufacturing (King, 2009), enabling a careful reduction of waste and cost in
production, and the systematic approach to the product development of the SE, with
the aim of combining the effectiveness of the SE approach to the sustainability of
the lean process.

All the above cited sources do not complete the wide list of references currently
available, but it happens that in daily practice of SE some of those are mentioned
for their well known contribution.

A straight implementation cannot be uncoupled from the tools and the test cases.
Aside the above literature another set of references specifically deals with the
languages of the Model Based Systems Engineering.

2.3 A Survey on the Literature About the Systems Engineering 17
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A unified approach among several technical domains is currently under devel-
opment by resorting to the System Modeling Language (SysML), evolution and
adaption to the SE needs of the former Unified Modeling Language (UML). Many
authors provide a complete overview about the language and its rationale use within
SE, although some are more frequently cited as:

• Sanford Friedenthal, Alan Moore, Rick Steiner—A practical guide to SysML,
the System Modeling Language, The MK/OMG Press, 1999 (and following)

• The OMG SysML, (version 1.1 November 2008 and following)
• Tim Weilkiens—Systems Engineering with SysML/UML—Modeling, Analysis,

Design, The MK/OMG Press, 2008
• Lenny Delligatti—SysML Distilled: A Brief Guide to the Systems Modeling

Language, Addison Wesley, 2014
• Pascal Roques—Modélisation de systèmes complexes avec SysML, Eyrolles,

2013 (in French)

It might be considered that new evolutions are already foreseen, as the Reader could
realize in:

• Lifecycle Modeling Language (LML) Specification, (http://www.
lifecyclemodeling.org/spec/)

although a first convergence of methods and standard processes is still currently
looked for, by a direct implementation of the SysML or at least some enriched
version.

More than handbooks about the SysML, it seems crucial remarking the existence
of some other sources oriented to its practical use through the methods of the
MBSE. Surely very well known is:

• Hans–Peter Hoffmann—Systems Engineering best practices with the Rational
solution for systems and software engineering, Deskbook (Model Based
Systems Engineering with Rational Rhapsody and Rational Harmony for
Systems Engineering), the IBM Software Group, © IBM Corporation, 2011

which enunciates the proprietary Harmony© approach proposed and implemented
within the software tool IBM Rational Rhapsody® by IBM. That approach is still
matter of testing for several technical domains, where contents are applied to
introduce the SE itself. Because of this need, some complete examples of imple-
mentation are currently widely appreciated as the:

• Bruce Powel Douglass—AGILE Systems Engineering, MK Morgan Kaufmann,
Waltham, MA, USA, 2016

where a bright development of a real test case is shown with all the details of
modeling activity

Many other sources are already available in this field and listing all precisely
should be unpractical, or even impossible. Those were proposed actually to outline
some typical contributions, the related subjects covered by the literature and even
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because some specific content has been matter of a refinement of the SE method-
ology, or it helped in assessing some critical issue, as soon as the SE was applied to
the series and material products of industry.

Mentioning those references was aimed at showing to the Reader some different
topics of education about the SE and even to point out a number of views, which
enriched the approach, by making sometimes difficult a fast and complete con-
vergence towards a generalized and comprehensive standardization, as is still
currently looked for.

To complete this overview it might be mentioned that a specific need of refer-
ences is still perceived within the definition of metrics for the evaluation of artifacts
and products during the verification and validation activities, as it shall be soon
explained in this handbook. A preliminary answer to this necessity was given by a
dedicated series of textbooks, published by some universities, to support the clas-
ses, as, for instance at MIT (Massachusetts Institute of Technology):

• Steven Eppinger, Tyson Browning—Design structure matrix methods and
application, Engineering System, MIT Press, 2013

which highlights, as a current trend of the literature, to move from some main
references dealing with the concept of system and the general approach of the SE
towards some detailed topic of its implementation, to assess and refine the tools
previously proposed.

From the above mentioned citations it looks clear that:

• several technical domains are currently involved within the development of
methods and tools related to the SE and express different approaches and needs;

• technicalities are related to some issues like the guidelines for the implemen-
tation, the languages and their assessment, the software tools and the creation of
suitable data management systems;

• many other activities like the safety engineering, the risk management, the
maintenance of systems are connected to the SE and their tools and methods
must somehow meet those more typical of the MBSE.

2.4 Technical Standards on the Systems Engineering

More details about the SE processes are today already provided by several technical
standards, being aimed at driving the user in implementing the SE and its tools.
According to the brief sketch above offered about the history of the SE, it could be
considered that a preliminary description of systems was provided by some military
standards as the DoD-Mil-Std 499 (1969), the Mil-Std 499A (1974) and the Army
Field Manual 770-78 (1979). They led to a preliminary draft of the Mil-Std 499B
(1994), which actually was never released as itself, but it was enabler of the
development of the ANSI/EIA 632 “Processes for Engineering a System”, which
collects the recommendations of the American National Standards Institute (ANSI)
and the Electronic Industries Association (EIA).
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The management of the SE was then goal of the IEEE 1220-1998 “Standard for
Application and Management of the Systems Engineering Process”, which was
presented in 1998 and refined in 1999, respectively.

During the early 2000s the real references for the SE were released as the ISO/
IEC 15288:2002 “Systems Engineering—System Life Cycle Processes” (2002), as a
result of the activity of the International Electrotechnical Commission (IEC)
together with the International Organization for Standardization (ISO), whilst the
guidelines of the INCOSE Handbook (recent version 2015) and of the NASA
handbook (recent version 2007) were updated.

Other standards were even published as the ISO/IEC 19760 “Guide for ISO/IEC
15288—System Life Cycle Processes”, which drives to a straight application of the
ISO/IEC 15288. The Institute of Electrical and Electronics Engineers (IEEE) basi-
cally accepted and applied the relevant contents of the ISO/IEC 15288 in the IEEE
Std 15288 2004. Moreover, the NASA analyzed several issues of those standards
within the NASA NPR 7123.1A “Systems Engineering Processes and Requirements”.

As the Mil-Std 499, 499A and 499B basically describe the life cycle approach,
while some details on the process, the goals, the outcomes and the activities were
described by the ANSI/EIA 632 as well as by the ISO/IEC 15288 and the IEEE
1220, some differences could be detected among the three main standards. The
ANSI/EIA 632 defines the processes required to engineering or re-engineering the
system, the ISO/ICE/IEE 15288 provides a framework to define the system life-
cycle, while the IEEE 1220 focuses on the system management.

A key contribution to this topic was even provided by the:

• ISO/IEC/IEEE 16085 (2006), “Systems and Software Engineering Risk
Management”

• ISO/IEC/IEEE 15939 (2007), “Systems and Software Engineering Measurement
Process”

• ISO/IEC/IEEE 16326 (2009), “Systems and Software Engineering Project
Management”

• ISO/IEC/IEEE 24765:2009 (2009), “Systems and Software Engineering
Vocabulary”

• ISO/IEC/IEEE 150261 (2009), “Systems and Software Engineering System and
Software Assurance, Part 1: Concepts and definitions”

• ISO/IEC/IEEE 150262 (2010), “Systems and Software Engineering System and
Software Assurance, Part 2: Assurance case”

• ISO/IEC/IEEE 42010 (2011), “Systems and software engineering Architecture
description”

• ISO/IEC/IEEE 15289 (2011), “Systems and Software Engineering Content of
LifeCycle Information Products (documentation)”

• ISO/IEC/IEEE 29148 (2011), “Systems and software engineering Requirements
Engineering”

• ISO/IEC/IEEE 150263 (2011), “Systems and Software Engineering System and
Software Assurance, Part 3: Integrity Levels”
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Those standards clearly demonstrate how much the SE could benefit of the
experience within the software engineering, although it applies to several other
systems, like to aerospace and mechatronics. This link to the software engineering
can be better appreciated if some technical standards of that field are analyzed.

In addition to the above mentioned ISO/IEC/15288, recently updated (2015)
about the Systems Engineering, the:

• ISO/IEC/12207:2008 (2008) deals with the “Systems and software engineering—
software life cycle processes”, and applies to the software development, seen as a
product, and to the processes proposed for a more general implementation to the
industrial systems

• ISO/IEC/26262 (2011–2012) defines the functional safety for automotive
equipment throughout the life cycle of automotive electronic and electrical
safety related systems and looks like an adaption of the following one:

• IEC 61508 (2012) even applied to the automotive electric and electronic devi-
ces, being entitled “Functional safety of electrical/electronic and programmable
electronic safety-related systems (E/E/PES)”.

Some additional references strictly related to the SE were released directly by the
ISO as the:

• ISO 17666:2003 (2003), “Space Systems Risk Management”
• ISO 31000:2009 (2009), “Risk Management Principles and Guidelines”
• ISO/IEC 31010:2009 (2009), “Risk Management and Assessment Techniques”

It is worthy noticing that in all of the above mentioned standards, quite inde-
pendently on the specific goal of each one, some clear attributes of the SE approach
are stated. The approach is solution-oriented, operates on the base of well defined
needs and proceeds through a holistic view of the system, including operations,
environments, stakeholders, and the whole life cycle, as it was brightly confirmed
by the SeBok Handbook (2014). Among all, the ISO/IEC/IEEE 15288 represents
the result of a gradual evolution of those standards. The process of SE there
identified follows a rationale which starts from the exploration of needs, investi-
gates functions and behaviors, proposes and analyses some suitable architectures to
reach a final synthesis of design.

2.5 Software Tools for the Systems Engineering

The implementation of the SE requires some software tools to collect the re-
quirements and to proceed with the modeling activity proposed by this approach.
Among the existing software some are quite well known and to make aware the
Reader will be herein briefly cited.

The IBM Rational DOORS® is currently widely used for the requirements
elicitation. It is usually integrated with the IBM Rational Rhapsody® which allows
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implementing the typical tools of the SysML language. However, other vendors
already developed similar packages like Agilian® (Visual Paradigm), Artisan
Studio® (Atego) nowadays embedded into the PTC Integrity Modeler®, Enterprise
Architect® (Sparx Systems), Cameo Systems Modeler® (No Magic) and UModel®

(Altova). They are available on market in different versions and usually sold by the
vendors above cited within brackets. In addition, are distributed for free the
Modelio® (Modeliosoft) and Papyrus® (Atos Origin).

Selection of software tools is quite a critical issue of the SE platform definition.
The above mentioned tools offer different contents, in terms of options, modules
and features, but a main issue is the format for exchanging the data and their
compatibility for a full interoperability with several other tools currently used
within engineering. This topic will be herein deeply described, since it looks the
main bottleneck for a very fast and easy implementation of the SE in all the
technical domains and for every application, although the problems occurring in
some case might be overcome by resorting to some standard connectors like the
Functional Mock-up Interface (FMI) or by basing the creation of the tool chain on
some interoperability standard like the Open Services for Lifecycle Collaboration
(OSLC).
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Chapter 3
The Methodology of Systems Engineering

Abstract It is well known that the amount of contents related to the Systems
Engineering often makes confused the users about their suitable exploitation in a
linear product development process. Therefore, in this first technical chapter, some
basic concepts are defined and some typical models of product development are
shown. They are compared and distinguished from some architecture frameworks
currently applied to define the system capabilities and some crucial views. A sketch
of the main steps of the Systems Engineering implementation is finally drawn,
together with a list of some proprietary approaches proposed by societies, com-
panies and software vendors for its straight deployment. Tools and languages are
even described, together with some engineering methods and the SysML language
is used as a relevant example to describe the main diagrams applied in functional
modeling.

3.1 Introduction

As it was already stated in previous chapters, the Reader should master the
methodology of the SE which includes processes, methods and tools, both theo-
retical and software. Those allow implementing a model of product development,
defining some typical views of the system and some related functional and physical
models to accomplish the whole design activity. To catch completely the core of the
SE understanding the definition of system is essential. Main differences between the
so-called architecture framework and the SE process will be analyzed as well as
some methods and tools related to the use of standard languages.

3.1.1 Definitions of System

According to a popular description, the system is an “assembly of elements linked
each other and strongly interacting and interdependent”. This definition clearly
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points out the intrinsic nature of assembly and of the interaction among components.
For a full understanding of the proposed process applied to system development,
the NASA handbook on SE explicitly goes deeper in details, by stating that:

A system is a set of interrelated components which interact with one another in an or-
ganized fashion toward a common purpose. The components of a system may be quite
diverse, consisting of persons, organizations, procedures, software, equipment and/or fa-
cilities […]

thus stressing the common goal of all parts composing the system and the different
nature of those components (even human). This interpretation is somehow
explained by the definition of system found in the Standard Mil-Std 499B, being
seen as:

An integrated composite of people, products and processes that provides a capability to
satisfy a stated need or objective

where the connection between system capability and need is clearly stated.
To complete that scenario, the INCOSE handbook brightly summarizes those

definitions by calling system:

An interacting combination of elements viewed in relation to function.

Those definitions are sufficient to collect the main keywords related to the system to
be developed through the SE. Moreover, engineering the system finally means that
a product is developed:

• To satisfy some needs, as a solution-oriented assembly of components which
might be even heterogeneous (people, products, processes).

• Through a harmonized integration able to express some specific capabilities
through dedicated functions.

• In such a way that each function is expression on the interrelated activity of the
system components, organized in a defined architecture, to be assessed through
a selection (trade-off) among some proposed and compatible available
technologies.

3.1.2 The System Development as an Industrial Product

Practically speaking, the real contents of the system design and production include
three main activities, according to definitions above mentioned.

Goals, mission and requirements identification. To satisfy some defined
needs, the system has to provide some suitable functions, which are associated to a
preliminary identification of goals, missions and scenarios which better describe its
lifecycle, together with the actors involved in such operation and the constraints
limiting its capabilities. That knowledge allows defining the system requirements,
through a careful elicitation, which should be complete and exhaustive, as much as
possible, to reach the benefits of the “left-shift” previously described.
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System behavior. To suitably shape the system to fit requirements, its behavior
has to be predicted. In a first step of investigation the neighborhoods of system
should be clearly identified as well as the different usages (or use cases), to define
the actors who interact with the system itself. System behavior can be then
described by understanding the context of its operation, in terms of interactions
between system and external actors, of sequences of activities performed, through
different states temporarily reached and held by the system.

System architecture. After a preliminary exploration of functions required to
satisfy the needs, each function should be associated to a sub-system, component
and part to define a configuration which exploits a certain technology.
A quantitative analysis of the system behavior could refine the requirements and
assess the system layout to select and eventually size the components to be included
in the system integration.

Those activities are essentially based on some concepts, which will be herein
defined and deployed.

The concept of traceability. The main idea promoted by the SE is to assure a
complete traceability from the requirement to the manufactured part as it is sket-
ched in Fig. 3.1. This approach allows relating any failure occurring to a compo-
nent or part to the corresponding requirement and identifying any potential critical
issue associated to the system safety. Moreover, if each requirement is properly
allocated to some function, then to subsystems, components and numbered parts,
the system complexity is decomposed and a clear connection between need and
solution is established.
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Fig. 3.1 Traceability and allocation of requirements through the product development in systems
engineering
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This approach fits the needs of designer to have a linear correspondence between
each requirement and a material component of the system, assuring the traceability.
Nevertheless, the rationale, bringing the project from an identified need through the
requirement, till the realization within a system component, is based on two
intermediate steps. First at all, each requirement should be corresponding to a
function or a set of functions, which the system has to provide. Every function is
seen as an action, being performed by a logical block first, then by a material
component, usually available on market or directly manufactured and identified by
its code number. Obviously this interpretation mainly describes a material product,
made through a technological process, although in some issues even the software
could be developed following the same approach.

It might be noticed that the above interpretation already defines a specific pro-
cess to be implemented, but not all of models of SE-compatible process proposed in
the literature perfectly correspond to those items. Particularly, the distinction
between a logical, or even in some reference, functional block and a numbered part
in some case is no longer used. In principle, it might be helpful if one considers that
difference as substantial, since the block is never yet associated to a specific
commercial or manufactured device like the numbered part is, but simply to a
specific component. Function “rotating”, for instance, might be associated to a
generic “motor” as a logical block, then allocated to a “brushless motor with given
set of properties”, when the real component is defined.

As Fig. 3.1 describes, among the requirements “R” collected through a pre-
liminary elicitation, father (“R1”) and son (“R1.1”) requirements are each by each
related to a function (“F1”) or subfunction (“F1.2”), being realized by the sub-
system (“S1”) or component (“S1.2”), which represent a simple actor, without a
precise correspondence to a pre-defined commercial device, which is only associ-
ated later, when a dedicated architecture is defined, as a numbered part (“P/N 2”).

If the system is an aircraft and the requirement is “being capable of propelling
itself during the flight”, the function is the propulsion, while the logical block is a
generic engine, which might be built by resorting to different technologies (turbine,
turbofan, …), whilst after a preliminary trade-off the designer identifies the real
nature of the turbo machinery, for instance a turbofan, with some power and some
defined dimensions.

This process seems extremely simple and linear, but some are the difficulties
which affect its fast and easy implementation. The elicitation of requirements is
never so fast and simple, but it has to be refined through several iterations.
Associating the logical blocks to real components needs a detailed analysis of
available technologies and a bright trade-off among some candidate solutions.
Modeling those entities actually requires different tools, since requirements are set
through verbal information, numbered parts are objects, in the material product
development. Functions and logical blocks need to deploy a smart view on the
system behavior and layout.

Those exigencies motivate the four pillars described in previous chapter. They
meet in two specific items:
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• The need of a systematic approach, described by a process, aimed at introducing
a method, which exploits a certain language and some tools.

• The deployment of that approach through several views, which focus on dif-
ferent attributes of the whole system. This is extremely important if the system is
seen as a good to be acquired.

The literature deeply investigated the role of processes and views in the SE
methodology, somehow making the Reader confused about their application. To
clarify this issue, it is worth noticing that different technical domains are prone to
focus either on:

• The product development from the customer need to the constructed system,
being seen as an object of the whole manufacturing process, thus identifying the
steps of design and manufacturing as the core of the development;

• The commitment of producing the system, being seen as a good to be acquired
to be integrated into a larger system (a fleet, an army, …), thus requiring that a
set of skills (capabilities) could be exploited in operation and they could be
simultaneously used as main targets to define the system design through the
whole manufacturing process, from design to disposal.

The first approach assumes that the product life cycle development is the first
task to be accomplished, by selecting and implementing a suitable model. The
second one adopts a set of standard views as a suitable reference to proceed,
focusing on the so-called architecture framework.

Despite a common feeling of the SE operators, views and models of product life
cycle are not in contrast, perhaps they could be seen as two points of view of the
same ideal matrix of the system design and production.

The process defined by the SE methodology meets the collection of views which
can be realized to describe and instantiate the system properties and attributes, by
following an architecture framework used by the system engineer to develop the
product. Those concepts are somehow confused in the literature, or at least,
unsuitably superposed, thus leading to some understanding. It is worth noticing that
process and views are somehow interdependent. Tools used to perform the process
allow obtaining some outputs, which can be used to depict the required views, as
well as views are essential in the elicitation of system requirements, defining the
architecture candidate to be applied to build up the system, or even in identifying
actors, interfaces and connections.

3.2 The Models of the Product Life Cycle

As it was just above stated, to describe the approach proposed for developing the
system, the specialized literature usually introduce a model of the product life cycle,
corresponding to some diagrams, which defines the sequence of actions to be
performed to reach a design synthesis first and the product disposal after. It is worth
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noticing that some current limitations affect the application of these models of
product lifecycle to all the technical domains, nevertheless their capability to
communicate an intuitive impression of the process suggested by the SE is con-
siderably relevant.

3.2.1 The Waterfall Diagram

The most intuitive model of life cycle consists in the so-called waterfall diagram,
being simply a sequence of blocks or items, listed by reproducing a water drop from
the top to the bottom, to represent the time at which actions are performed.
Figure 3.2, for instance, shows an example of waterfall, whose main limitation is
that very often it is incomplete and actions related to the design and manufacturing
or testing activities, respectively, are poorly associated. This approach turns out into
a misunderstood interpretation of all the relevant implications and links existing
between the ALM and PLM stages.

3.2.2 The V-Diagram

To overcome the limitation of previous model, the so-called V-diagram is often
proposed to show some typical key steps of the SE process, as it looks in Fig. 3.3.
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debugging

Disposal and 
installing

Opera�on / 
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Fig. 3.2 Model of the product lifecycle described by a waterfall diagram
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This diagram is quite popular and provides a number of useful outlines about the
process to be applied, although some elements are often interpreted as poorly
precise to allow an immediate perception of contents, as it will be herein pointed
out. The path to be followed starts from the upper left corner, goes down to the
bottom through the left side, and then continues by going up through the right upper
corner, across the actions described on the right side.

It is clear that a holistic approach is there evidenced, since the Reader can easily
find all the steps of the system development from the very early concept (start) to
the service and after (disposal). The hierarchy of levels suggests to start from the
whole system to design the details of components and parts, thus preferring a top-
down approach. It might be immediately remarked that is quite unusual for a
material product, since it is often applied a bottom up approach. The “V” structure
of this diagram emphasizes the need of considering each action of the design
activity, on the left side, strictly related to a corresponding issue of production,
depicted on the right side. The Application Lifecycle Management—ALM, corre-
sponding to the left wing and the Product Data Management—PDM, being the
right wing, should be never considered as two separated activities, and almost
uncoupled. By converse each design issue needs to be verified and validated. This is
extremely important because, for each function, a test must be foreseen to verify
whether the requirement is fulfilled and to validate whether the corresponding need
is satisfied. In this activity, there are some key operations like testing, integration of
elements (components, subsystems, and the whole system) and assembly, which
need a preliminary check about the feasibility of product.

The chronology of steps somehow provides some guidelines to be followed.
Within the design activity, on the left side, the Application Lifecycle Management
is basically considered. It starts with a key item like the detection of the customer
needs, thus stating that customer plays a fundamental role in the product devel-
opment and the related needs are the source of requirements and specifications to
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Fig. 3.3 Description of the “V diagram” applied to the product development in systems
engineering
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design a solution, being the product itself. The requirements should carefully
consider the stakeholders, e.g. all of actors (persons, processes, systems and
devices) exhibiting some kind of interest for the system, thus motivating a direct
interaction, being different use case by use case.

The right side of the V-diagram helps in perceiving the need of relating each step
of the ALM to some key activities of production, as testing, applied to parts,
components, subsystems and to the whole system, together with the integration, the
final assembly and even the actions associated to, transportation, installation,
service and disposal. An evident need depicted by the diagram consists in assessing
some standard metrics to be applied for an evaluation of performance and suitable
tools to perform both the verification and the validation.

The above described model is very well known in the literature, although
nowadays many Systems Engineers are prone to find a couple of limitations in that
representation of the product lifecycle development. A first rough limitation is that
requirements elicitation looks like complete and finished after the first steps of the
process. Actually it definitely doesn’t. In many cases, needs, standards and practice
of technical domains suggest a number of requirements, but only a deeper analysis
of system functions, operations, architecture and of some measurable performances
allows assessing that list. Therefore, a lack of clarity of that diagram concerns the
recursive process implemented to define suitable requirements. That’s the meaning
of circular arrows added in Fig. 3.3. In practice, requirements are defined for the
whole system, then applied to each subsystem, component and part, whilst a design
process is started. At the beginning, only a conceptual design is performed, by
resorting to a functional modeling, then functions are associated to some logical
devices, providing those functions, but not yet associated to a specific technology,
and a preliminary design could be performed. Nevertheless, this preliminary ar-
chitecture needs to be verified and somehow tested, to be then specified in a
synthesis of design, which includes more details and associates all those logical
blocks to real parts, selected on market or produced by design. In principle, as the
design goes deeper, the system layout could be better defined even in its smallest
components. In this step it is crucial resorting to a physical modeling, based on
mathematics, i.e. equations which allow predicting the main figures of performance
of the system behavior.

This diagram often doesn’t cite the aftermarket operation, including mainte-
nance and service. It could be foreseen another cycle of operations which includes a
first training of operators, the system operation, then a monitoring activity which
leads to a continuous maintenance, an evaluation of performance and even an
optimization of the system configuration. Those tasks basically motivate two current
developments of the roadmap previously described for a straight product lifecycle
management. Connectivity could help in monitoring the service of systems until
their decommissioning, for instance like the growing up strategy of “Industry 4.0”
describes and deploys. Moreover, instead of applying the Systems Engineering to
single products, a newer implementation considers a Line of Products and focuses
on how systems are changed, version by version of the same product, through a
progressive configuration change, not limited to the single product development. It
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might be associated no longer a pure Model Based Systems Engineering but even
more a Model Based Product Line Systems Engineering.

3.2.3 The Spiral Diagram

Those limitations motivated the proposal of the new model of product lifecycle
based on a spiral frame, to point out that the SE process is a recursive approach and
each step needs an assessment, being performed by refining the previous one, step
by step, circle by circle, particularly when requirements are concerned. This rep-
resentation suggests that each step might take a look on the nearest part of the
diagram previously covered, being deployed in the inner region, as in Fig. 3.4.

As the deployment goes towards the center of the spiral, the product reaches its
complete development and activities are gradually performed and completed. As in
previous case, main steps are identified, consisting of requirement analysis, func-
tional analysis and modeling, physical modeling and final validation. As it looks
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Fig. 3.4 Sketch of the “spiral diagram” applied to the product development in systems
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evident after a first turn, specifications are assessed and a better design of details
could be performed.

Several operators in the field of Systems Engineering find still some lacks of
information in this representation, which is surely fairly well detailed. In the
technical domains related to the manufacture of material products, those people
complain the two main issues should be integrated, since the early steps of the
proposed development. In case of safety critical systems, i.e. of products associated
to potentially severe failures and high risk, those activities should include not only a
functional analysis, and related modeling, but even a parallel deployment of a non
functional analysis, or even dysfunctional, being tailored to detect all the relevant
requirements connected to the safety and reliability of the system. It is nowadays
widely assumed that a late safety and reliability analysis performed on a definitive
configuration of systems is ineffective to prevent severe failures and their catas-
trophic consequences. In addition, a complete design should evaluate, since its
beginning, the business model to be applied for that product, to prevent high costs,
infective marketing and unsuccessful disposal. Those reasons motivate to associate
to the model of product lifecycle a defined process, which is currently object of
assessment and refinement by several technical standards, some vendors of dedi-
cated software and even academy. Before proposing a deeper investigation about
process, the alternate approach of the architecture framework will be described.

3.3 The Architecture Frameworks

As the Reader could realize, the model of the product life cycle expressively looks
at the system as a product to be designed and manufactured, and actions are
performed with the aim of providing the complete system at the end of that process.
By converse, if the point of view of the customer is mainly privileged, the focus
might move upon the validation, i.e. on the correspondence between the product
manufactured and acquired and the needs, or even the original idea of the com-
mitment. This is crucial in a procurement activity of systems, based on some
preliminary agreement. In this case, the same product could be seen as an object
exhibiting some capabilities to be exploited in operation. Therefore, some views of
the system might help in defining its characteristics and, consequently, in identi-
fying some suitable process to be applied in design, manufacturing and testing. This
interpretation leads to define a framework within which the designer should find the
solution to be proposed to the customer and the related architecture of the analyzed
system.

Many are the architecture frameworks proposed to define the main views of a
system. Some of those are fairly popular in the literature. They were proposed by
several actors, including public institutions, technical standards, communities
working within the same technical domain or even some software vendor. Some
examples are the:
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• AF-EAF: Air Force Enterprise Architecture Framework.
• AFIoT: IEEE P2413 Architecture Framework for the Internet of Things.
• AAF: Automotive Architecture Framework.
• DoDAF: US Department of Defense Architecture Framework.
• ESAAF: European Space Agency Architecture Framework.
• MODAF: UK Ministry of Defence Architecture Framework.
• NAF: NATO Systems Architecture Framework.
• TOGAF: The Open Group Architecture Framework.
• UAF: the Unified Architecture Framework proposed by NO MAGIC.

The exigency of developing an architecture framework basically was found in the
defense domain, to have a comprehensive guidance to enable an effective commit-
ment and a consequent successful development of tailored products. Moreover, it
provides a common information and communication infrastructure to connect cus-
tomer and manufacturer. Somehow, as is it brightly claimed by Nordqvist, Edberg,
Byström, and Gustfsson (2006) as far as connectors in computer science enable the
interoperability among tools to create the right environment for the heterogeneous
simulation, the architecture frameworks allow to create a sort of “intellectual in-
teroperability” among people, especially when customer and system engineer meet.

The architecture frameworks, easily speaking, provide some guidelines about
how describing the system architectures, while they do not drive the design activity
itself. Daily practice suggests that the architecture frameworks support the
decision-making process, allow defining some capability requirements, and enable
the communication among the system suppliers, developers, producers and cus-
tomers. As it was previously stated, the architecture frameworks are used to identify
the needs and allocating them to the system.

Those goals were clearly detected by the ISO who proposed some standards
about the architecture frameworks, like the ISO/IEC/IEE 42010 (2011), which
practically harmonized and completed some contents of the Architecture
Frameworks above listed. A brief description will be herein proposed just to
understand what are the views proposed and how they could be applied to the
system development, while a more detailed analysis of this subject could be found
on the references related to the Architecture Frameworks above cited.

3.3.1 MODAF

In case of the MODAF, for instance, the architecture framework is based on six
viewpoints, shown in Fig. 3.5. Within the viewpoints, up to 38 views are foreseen
and enable each one to depict a particular aspect of the system.

The views describe some capabilities required to the system, motivating a
specific selection of a suitable architecture aimed at providing some function. Just
to make aware the Reader about the contents, viewpoints are briefly herein
described.
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The Strategic Viewpoint, for instance includes the capabilities:

1. Vision: how the goals shall be reached over time
2. Taxonomy: how to structure and decompose capabilities
3. Phasing: available capabilities for different time periods
4. Clusters: relationships among capabilities
5. Systems Deployment Mapping: deployment of systems and relations
6. Function to Operational Activity Mapping: mapping between capabilities and

operations.

The Operational Viewpoint consists of seven views:

1. High level operating concept: graphical and textual descriptions of system
context and operational performance associated to the scenarios.

2. Operational node connectivity: it describes some operational nodes and data
exchanged between nodes.

3. Operational information exchange matrix: it is used to describe the information
exchanged.

4. Organization relationships chart: it depicts the command structure.
5. Operational activity model: operational activities.
6. Operational activity sequence and timing: rules and constraints for the enter-

prise or business; operational states and event traces.
7. Logical data model: relationships among operational data elements.

The Systems Viewpoint has eleven views:

1. System Interface Description: systems and related interfaces and nodes.
2. Systems Communications Description: ports specification and protocols, port

connectivity, connectivity clusters, which describe how individual connections
are grouped into logical connections between nodes.

3. Systems-Systems Matrix: interface characteristics.
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Fig. 3.5 Viewpoints of the
architecture framework
MODAF
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4. Systems Functionality Description: hierarchies of system functions and data
flows.

5. Operational activity to systems functionality traceability matrix: relations
between operational activities and system functions correlated.

6. Systems data exchange matrix: characteristics of data exchanged.
7. Systems performance parameters matrix: quantitative metrics of systems and

hardware/software elements, interfaces and functions.
8. Systems evolution description: systems and architectures evolution over time.
9. Systems technology forecast: development of the supporting technologies.

10. Systems functionality sequence and timing: rules for the selection of the system
architecture; state transition between two events; event traces, recorded and
exchanged between system elements.

11. Physical schema: structure of data and properties of the system.

The Technical Viewpoint includes only two views:

1. The technical standard profile: it shows the standards and the constraints
applied to the architecture.

2. The technical standards forecast: prediction of changes in standards and con-
ventions defined into the technical standard profile.

The Acquisition Viewpoint just is based on a:

1. Systems of systems acquisition clusters: where the acquisition plans are
described.

2. Systems of systems acquisition programs: which are focused on the dependen-
cies between a main program and the projects of each system.

The All (other or inclusive) Views finally summarizes the information through
two views:

1. The overview and summary information: they describe the whole architecture.
2. The integrated dictionary: it defines the terminology used within the architecture

definition.

It is remarkable that many items pointed out by the views are associated and
connected to the steps of product development previously described by the models
of product lifecycle. Moreover, in many views several keywords linked to the
definition of customer needs and to the elicitation of requirements appear. This
demonstrates the intimate link between views and process. They look like rows and
column of a same ideal matrix to be used to describe the contents of the system
design and production.

3.3.2 UAF

As it can be immediately appreciated, the list of views and viewpoints might change
case by case, depending on the technical domain, but it provides a real frame to
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describe the overall properties of the system to be designed and validated after
design. The architecture frameworks above mentioned basically adopt some dif-
ferent viewpoints and views inside those. The Unified Architecture Framework
(UAF) recently introduced proposes a reference matrix which summarizes the
viewpoints in rows, while columns refer to the main information to be shared and
defined (Fig. 3.6). It clearly states the relationships between viewpoints and system
properties or attributes, while it gives to the user a quite manageable tool for its
application. Moreover, a certain merge of the most interesting and qualified con-
tents of many other architecture frameworks was performed, thus leading to con-
verge towards a unified approach, applicable in several technical domains.

The main milestones useful for the industrial product were all enclosed in the
framework, particularly where the information were set up. Moreover, the key
activity of simulation is used to connect processes, states and interactions. The
requirements are clearly evidenced as a main item, as well as the glossary and a
summary.
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3.3.3 Framework and Process

It is worth noticing that a frame is just a common language, but contents have to be
filled by analysis. This task is performed by following a process and resorting to a
standard way to represent things, like only a language can support. After the
elicitation of requirements, based on the needs identified, even through a prelimi-
nary selection of capabilities, a modeling activity is performed and some simula-
tions are completed.

The model is a physical, geometrical, mathematical, procedural representation of
a real, ideal or even virtual system. The simulation consists into the implementation
of the models in some executable forms, which allows investigating the reactions of
the system modeled to different events or simply over time.

According to the MBSE, the process is aimed at defining a model of the system
which can be used to describe its behavior and architecture to allocate the
requirements. The architecture framework could help in defining the details of the
system, to establish the needs and all the relevant aspects to be considered in its
development, to drive the requirements elicitation, eventually providing a suitable
reference to validate the system. Functional and physical modeling activities should
provide some suitable representations to deploy the views which are foreseen by the
architecture framework, being in some domain the right and standard way to
express and represent the result of the whole product development, or to check the
compliance between the contents of the commitment as well as the system per-
formance and properties.

3.4 The Industrial Implementation of the Methodology

In many technical domains involving industrial engineering, i.e. those aimed at
finalizing the activity of product development to manufacturing, a simplified sketch
of the above mentioned representations of the SE process is close to that depicted in
Fig. 3.7.

According to the representation given in Fig. 3.7, industrial systems engineers
are often prone to follow a main flow of activities, which is described in the middle
of sketch and includes:

• A preliminary identification of customers and their needs together with an
enterprise model.

• A preliminary elicitation of requirements, oriented to the system mission, goals
and use cases, for given scenarios.

• A definition of system functions, based on requirements, use cases and stake-
holders behavior, aimed at describing a preliminary architecture where inter-
faces are defined. In this case blocks are related only to functions and
capabilities.
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• A definition of a logical architecture, which transforms the functional archi-
tecture into a product breakdown structure composed by logical blocks, nom-
inal actors neither yet associated to a specific technology or configuration, nor to
a commercial product.

• A physical architecture, where functions and logical blocks are finally related to
a detailed selection of devices and subsystems.

This interpretation is based on the consideration that an intermediated layer like
the logical architecture allows the designer uncoupling capabilities and functions
foreseen in previous steps from a specific set of devices and components, exploiting
a given technology. This strategy allows proposing different solutions, when
available, and comparing their performances. The same result cannot be achieved
only resorting to the functional analysis, because it is not assured that each function
is performed only by a single system component, therefore the step between
functional architecture and logical one usually allows decomposing the function
allocation into a distribution of blocks, being closer to the final physical configu-
ration of system, where each generic logical block is then substituted by a real
device. It might be pointed out that not all the processes proposed in the literature
accept and adopt that interpretation, but in some cases, from a preliminary
description of system functions, the real components and parts are then associated
to those functions, whilst a candidate architecture is drawn. So far, the intermediate
step of a logical description of the function to identify a sort of “function maker”,
not yet corresponding to a real device, is an option, although one of the most
effective.
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Fig. 3.7 Simplified flow of engineering used in some technical domains with aside descriptions of
main activities and targets
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Actually, when that interpretation is implemented, three main outputs are pro-
vided as described in Fig. 3.7, namely the Functional Breakdown of System (FBS),
the Product Breakdown of System (PBS) and the Product Integration, which define
well the real steps of the information assessed in the product lifecycle development.

Moreover, some common activities are performed to proceed with the flow of
activities above depicted. For each level of development, concerning system,
subsystems, components and parts, designer investigates the available technologies,
defines some alternate solutions, based on some architectures, then performs a
trade-off analysis to select the best one. Once that system is defined through a
design synthesis, a complete verification and validation activity is performed.

Several are the criteria used in those actions, but they could be summarized
basically by the safety and security assurance, by the evaluation of performance in
terms of capabilities, smartness, connectivity, reliability, availability and mainte-
nance in service and by an overall sustainability, which includes cost, feasibility,
environmental compatibility and, somehow, the quality of product.

Those items are compatible with the concept of dependability, being precisely
explained for instance by Douglass (2016) and sketched in Fig. 3.8. Main steps of
the SE process are there associated to some key activities of the product devel-
opment, thus pointing out the need of defining several details like layout, tech-
nology, integration and final architecture before reaching the verification and
validation, and through a closed loop of feedbacks always active until the disposal
of system, even during its operation.
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Fig. 3.8 A straight interpretation of dependability within the product lifecycle development as
recently proposed by B. Powel Douglass
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3.4.1 Key Issues of the SE Process

Those representations of the SE approach were proposed to make the Reader
appreciating that in the literature and in some standards the interpretations given to
this subject are slightly or substantially different, although some key concepts are
kept by all the contributions. Nevertheless, once that main contents of process are
caught, their implementation is never easy, if it cannot be driven by some guidelines
and performed through some suitable tools. A method to deploy the process is
strictly required, to face the problem of how implementing what the process
describes. Before that a preliminary overview of methodologies currently proposed
could be provided, which include also the methods to implement the process, it
looks worthy explicating some crucial concepts and issues common to all of those.

A relevant result of the MBSE implementation concerns the time at which a
certain subject in the system development is addressed and the tool used to perform
the analysis. Those details are essential for the assessment of the SE approach and,
somehow, for the existing competition among vendors of the dedicated software or
even among companies offering the MBSE services.

Main targets of this discussion are:

• Definition of the system architecture and technology.
• Differences and integration of functional and physical modeling activities.
• Safety and security assurance and differences.
• The real contents of the verification and validation (V&V) process.
• The industrial baseline proposed for the system engineering.

Architecture and technology. Definition of some candidate layouts for the
system development might suffer the problem of either:

• Resorting to some well-known architecture, being often legacy of the technical
domain where designer works, without exploring any other new idea, thus
reducing the effort towards innovation.

• Feeling a lack of ideas, similar to the fear of writer for the blank page, being
associated to a real need of following some drivelines to proceed and excite new
concepts and solutions.

This need is covered by the definition of the so-called architecture frameworks,
which are used first to define the commitment of a new product, then to validate the
proposed solutions.

Similarly, the selection of the most suitable technology to be applied in the
product development might be affected by a certain trend of designer to resort to
some and typical solutions, by avoiding to investigate the possibility of applying a
completely different technology, perhaps typical for another domain. In this case,
the tools of the MBSE exhibit a lack of a specific representation to import and
digitalize a screening of available technologies, which could be reusable and
complete. Nevertheless, in this handbook, some additional tools will be described,
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although they are not yet included in some standard language of the SE, as the
technology charts.

Functional and physical modeling. As previous sections described, there is a
need for a preliminary qualitative analysis of the system development to define
clearly goals, actors, functions and interactions, being poorly associable to some
mathematical model. This first task is the goal of the so-called functional modeling.
However, a complete refinement of requirements can be performed only by
resorting to a quantitative prediction of performance, which can be made through a
mathematical modeling of system, including a geometrical description of its layout,
a dynamic analysis of its behavior and, eventually, of energy conversion and dis-
sipation. This is the activity referred to as physical modeling, since the literature is
prone to associate the concept of physics to the real nature of a material product and
to the whole set of its characteristics. The two above cited models have to be
connected each other and interoperated. Interoperability becomes a crucial task of
the MBSE and of tools used to implement it, especially if it is required that an
automatic exchange of data is performed.

Safety and security. In case of software engineering, a critical issue of design is
the security of product, being meant as avoiding any change which might introduce
a cause of failure, either due to an uncontrolled modification or to any access to the
code not allowed. In many products of industrial engineering, a critical issue is
safety, being finally interpreted as an assurance that any failure eventually occurring
to system is never severe and dangerous for operators and for the integrity of the
whole system.

It is worth noticing that safety is assured by standards through the application of
suitable margins, when designing the system with respect to some limits and sat-
urations. Nevertheless, a specific demonstration and evaluation of safety and reli-
ability, which describes the probability of failure, are usually performed after that
the system architecture is completely defined and sizing is finished. Some suitable
tools are usually applied, as the Fault Tree Analysis (FTA) or the Failure Mode and
Effects Analysis (FMEA).

A key issue of the MBSE is that functional modeling, being introduced to help
the designer and to be interoperated with the numerical modeling, allows a
simultaneous analysis of behavior in presence of failure, i.e. it resorts to a non
functional or even dysfunctional analysis which can be performed in parallel to the
functional one, thus allowing a refinement of requirements and of the system ar-
chitecture, by considering its behavior affected at least by some typical failure
conditions. This task will be herein particularly developed as it looks one of the
most challenging issues of the application of the MBSE to the industrial product.

Verification and validation. Another significant concept within the MBSE
approach is the so-called V&V process, which might be interpreted in some dif-
ferent ways, domain by domain. It can be remarked that the effectiveness of the
whole approach has to be measured at the end of process, through some suitable
metrics and by providing some evidences. Therefore, a first step consists of a
verification being aimed at demonstrating that “you built the system right”,
according, for instance, to the ASME V&V 10.1 (ASME, 2012). The verification
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activity practically should demonstrate that the modeled system corresponds to the
original concept developed by the designer in terms of properties, attributes and
performance, and it assures a complete coverage of requirements.

After this step a validation is performed to demonstrate that the system built
corresponds to the models used to predict its behavior and, moreover, it fits the
requirements allocated to each part, thus assuring a complete compliance to the
customer needs. It should be confirmed that “you built the right system”
(ISO15288, 2015). In case of a pure structural system, the difference between
verification and validation could be appreciated in Fig. 3.9.

According to the sketch of Fig. 3.9, the verification activity is often based on a
numerical simulation of the system behavior and it needs the creation of a math-
ematical representation of its geometry. Those models include all the design
parameters useful to define the system architecture. A computational model is then
used to describe the system performance once that the equations associated are
solved. A first verification consists in assuring that equations written to describe the
model of the system analyzed are correct. Moreover, after some calculations, it is
required to verify that these are correct. Those verifications are suitable to
demonstrate that modeling activity describes the system conceived, but are insuf-
ficient to give an evidence that they can really predict the system performance
without a mock-up. Validation is typically based on the comparison between the
prediction performed through the mathematical models and the real behavior of the
prototype of the system.

Object of interest

Abstrac�on

Concept

Mathema�cal
model

Mock-up

Computa�onal
model

Numerical simula�ons

Experimental
set-up

Experimental
evidences

Results of modeling ac�vity Results of experimental ac�vity

Verifica�on of the 
code used for the 
calcula�on

Verifica�on of
the results of
calcula�on

Preliminary
calcula�ons

CORRESPONDENCE ?

Valida�on

YES

NO

Fig. 3.9 Development of a mechanical and structural system according to ASME (2012)
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As it could be appreciated in the above figure, definition of the quantitative
modeling activities based on either a numerical representation or a direct con-
struction of a physical mock-up to perform some tests is clearly described and some
steps are even included. By converse, the first part of that description, being focused
on the concept of system and preliminary definition, is still quite general and
somehow poor, even inside a standard. That step of the system development can be
suitably detailed and covered by the MBSE, thus balancing the two main sections of
the overall product development.

The industrial baseline for product development. Practically speaking, in case
of large and complex systems industry, it is prone to implement the MBSE within
the product development by using its methodology in each step and by associating
the models even provided by the SE as is shown in Fig. 3.10. It can be appreciated
that the typical approach described by the V-diagram is recursively applied to each
step. Key sub-processes are the system integration, meant as the assembly through a
suitable harmonization of components to be compatible and concurrent in providing
the required functions. Verification and validation are dominant activities as well as
the so-called Configuration Management, being aimed at tracking and authorizing
the changes all along the system development. Moreover, models described for
each column compose the overall tools available to produce the views required by
the architecture framework, according to the customer needs. They include different
kinds of models and contents, as requirements which are based on verbal contents,
the SysML or similar representations, based on graphical meta-models and finally
mathematical models, either related to the geometrical description of system and
digital mock-ups, or to some numerical analyses. A detailed information for pro-
duction could be found in Bill of Materials or BOM and production plans.

Requirements SysML
diagrams

Various numerical
models

Digital
mock-up

BOM 
and produc�on 

plans

Fig. 3.10 Example of baseline for the product lifecycle development and association with
different modeling techniques and artifacts
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This handbook is aimed at showing through some test cases how modeling
activity is performed by means of tools currently available within the SE and how
the functional and physical analyses meet within the so-called heterogeneous
simulation, through a real interoperability. Moreover, some typical difficulties
arising along this process will be highlighted to describe some problems which have
to be faced in applying the MBSE to a product coming from a material processing.
In the meanwhile, the main benefits of this approach will be pointed out to motivate
and instantiate its application to the industrial product development.

3.5 Overview on Known Methodologies to Implement
the MBSE

Actually, several approaches have been developed during the last years to support
the MBSE and implement the processes. A bright survey of those approaches was
provided by Estefan (2008) and continuously revised and updated, for instance by
the INCOSE (2017). A brief description of the leading MBSE methodologies is
provided, to represent the scenario of interpretations currently available, but even
the depth of information provided by the SE Community.

3.5.1 The INCOSE Object-Oriented Systems Engineering
Methodology (OOSEM)

The OOSEM was developed since 1998 and further refined by the INCOSE
(Friedenthal, Moore, & Steiner, 1999). It looks prone to apply the V-diagram as a
model of the product lifecycle, but even other similar descriptions. Since 2006, it
adopts the SysML language to support the specification, analysis, design and ver-
ification of systems. The OOSEM is a sort of scenario-driven approach, i.e. it
integrates the process, being fully object-oriented, with the model-based approach.

A key focus is the definition of the system goals, mission and operative sce-
narios. Those are associated to a precise identification of the stakeholders and their
needs, as well as to an effective classification of requirements, being followed by
their elicitation. The definition of the logical architecture of system, being clearly
distinguished from the constructional view, is assumed to be a milestone in
applying the SE process, then a synthesis of the candidate physical architecture is
performed. The trade-off analysis to optimize the system layout upon an evaluation
of alternate solutions is a key task of the engineering methods. Moreover, the
validation and verification of the system are used as essential step of the imple-
mentation of this method to assess the design activity. Reusability is often high-
lighted as a priority and, somehow, as a goal of the development.
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3.5.2 The IBM Rational Telelogic Harmony-SE

The IBM Corporation developed the Harmony-SE process in 2006 (Hoffmann,
2011). It is very well known, even because of the popularity of H.P. Hoffmann, who
taught the contents of this approach in several countries as he wrote in “Systems
Engineering best practices with the Rational solution for systems and software
engineering—Deskbook”, distributed by IBM.

The process proposed is based on the same principles of the “V” life-cycle
model, exploiting an iterative workflow that includes an incremental cycle through
the three main phases of requirements analysis, system functional analysis,
and design synthesis. The “Harmony process” supports the “Model-Driven
Development” (MDD) approach, in which the model is the central work product
of the development processes, based on the SysML structure diagrams. From the
architectural point of view, a key issue is resorting to some central repositories to
store the information and even to share among the users. The purpose of this
methodology is to be designed as tool and vendor neutral, respectively. However,
IBM provides a support of Harmony within the IBM Rational tools packages,
therefore this methodology is often associated by users to the proprietary software
tools.

3.5.3 The IBM Rational Unified Process for System
Engineering (RUP-SE)

The RUP-SE was also defined by IBM (Cantor, 2001). Actually it extends the
Rational Unified Process (RUP) of concurrent design and iterative development for
Model-Driven System (MDS), by resorting to the spiral model and including object
oriented principles. A main issue is that this approach emphasizes the business
modeling, namely the first discipline of iterative tasks, to guarantee the confor-
mance of the system requirements with business activity. It might be appreciated
that this specific introduction of the business model associated to the product
lifecycle deployment is a key issue of the SE implementation, although it is very
often neglected in the literature or even in several practical applications. A suitable
focus upon the business model to be implemented is a sort of constraint or boundary
condition for a straight implementation of the model. Basically, it defines the
product in terms of either series or single product (variety of versions, when
multiple) time of permanence on the market and service. This methodology is
supported by IBM with the RUP SE plug-in Rational Method Composer (RMC).
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3.5.4 The Vitech Model-Based System Engineering (MBSE)

Approaching the SE without citing the Vitech Company (www.vitechcorp.com)
currently seems as a lack of historical information about the development of the
MBSE. Actually, Vitech is promoting a significant action of education, imple-
mentation and application of processes and methods of the MBSE. Particularly, the
incremental approach to the MBSE involves the Vitech’s CORE® environment as a
system design repository, providing a connection among stakeholders, source
requirements domain, behavior domain, architecture domain and verification and
validation domain. The used language for technical communication is the System
Definition Language (SDL) that is based on relationships, entities and attributes.
This approach is supported by the Vitech CORE® suite. The approach is based on a
proprietary model of product development, namely the Onion Model, organized by
layers which allow the user passing from the source documents of the customer to
the final specifications by including all the relevant actions of requirements anal-
ysis, system behavior, architecture and design, as well as verification and
validation.

3.5.5 The JPL State Analysis (SA)

The California Institute of Technology, as the Jet Propulsion Laboratory
(JPL) developed a method that defines model- and state-based control architecture.
The states describe each condition reached by the system when evolving in time,
while the models describe the evolution of the system states themselves
(Rasmussen, 2015). This method enables the evolution of the system model during
the project lifecycle, through an iterative modeling process and the state-analysis
information. They are compiled in a SQL database and ensure the fulfillment of the
software requirements, when applied to this product development.

3.5.6 The Object-Process Methodology (OPM)

The Object-Process Methodology (Dori, 2011) is a holistic system paradigm based
on Objects, namely things that simply exist, and Processes, which are seen as a
transformation patterns applied to the objects. This methodology defines the system
development, lifecycle support, and evolution, in three main stages: requirement
specification, analysis and development, and implementation. The OPM combines
the Object-Process Language, OPL (process-oriented approach) and Diagrams,
OPDs (object-oriented approach) supported by the OPCAT software environment.

48 3 The Methodology of Systems Engineering



www.manaraa.com

3.5.7 The Architecture Analysis and Design Integrated
Approach (ARCADIA)

The ARCADIA (ARChitecture Analysis and Design Integrated Approach) is a
Model-Based engineering methodology for systems, hardware and software ar-
chitecture design, developed by Thales approximately between 2005 and 2010.
Three mandatory interrelated activities are recommended and play the same role in
terms of importance: Need Analysis and Modeling, Architecture Building and
Validation, Requirements Engineering. The ARCADIA is supported by a standard
modeling tool (the Melody Advance/Capella) that relies on the UML/SysML lan-
guages (Roques, 2016).

3.5.8 The Systems Modeling Process (SYSMOD)

The SYSMOD Systems Modeling Process (Weilkiens, 2016) is a user-oriented
approach for requirements engineering and system architectures. It includes the
following activities: stakeholders identifying, requirements elicitation, system
context definition, requirements analysis (e.g. with use cases), domain model def-
inition, and system architecture definition by levels (functional, logical, physical).
The SYSMOD is tool-vendor independent.

3.5.9 The Alstom ASAP Methodology

Like the ARCADIA the Advanced System Architect Program (ASAP) is expression
of the Systems Engineering application to a specific technical domain, as the
transportation and railways systems (Ferrogalini, 2015). It was directly developed
by Alstom and aims at reducing the system complexity by improving the quality of
system specifications. According to this approach, textual requirements are initially
deployed on model elements, then are further specified and refined. The modeling
approach is focused on a operational vision, which deals with objectives and
missions; functional vision, which concerns the strategy to perform the mission; and
constructional vision, which applies to elements required to perform the functions.
Alstom adopts the standard SysML language to implement the ASAP.

3.5.10 Synthesis About the Methodologies

Previous overview points out that a real standardization was not yet reached within
the SE, although several standards already support this activity. By converse, it is
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true that a suitable convergence could be found, since in terms of main activities all
of the cited methodologies substantially agree, despite of a variety of details in the
implementation based on software, theoretical tools and languages. It might be
perceived that different points of view, i.e. different thinking heads, assume that the
core actions in the SE implementation concern the system as it could be designed,
manufactured, and even sold. That variety of interpretations helps at the very
beginning in analyzing all the relevant issues of the product development, but
creates a number of solutions, poorly compatible with a straight unified approach, to
be shared and applied among the operators. A standardization is definitely needed,
as it was preliminarily developed and studied by 68 Partners within the European
Project ARTEMIS-JU “CRYSTAL”, stating for “Critical Systems Engineering
Acceleration” which was developed since 2013–2016 (www.crystal-artemis.eu). As
it was demonstrated by that project, for assessing a standard procedure to imple-
ment the SE within a community of users, a preliminary acceptance of a common
process is required. Then, a more difficult agreement about the engineering methods
is necessary, although the most difficult task usually concerns the operation of a
common platform building, consisting of a chain of interoperated software tools.

3.6 A Reference Process: The ISO/IEC 15288

As in previous sections some main methodologies were recalled, it is worth
noticing that the product development process is clearly depicted in the main SE
references, but sometimes the activities foreseen at the very beginning are not so
trivial like a user could wonder. A straight procedure to catch the real needs of
customer, for instance, was never actually assessed, although it is a daily activity of
the system engineer. Nevertheless, the contents of the ISO/IEC 15288 Standard
clearly introduce some major details of process. It describes what is basically
required to do for developing a new product. This is the point of view is of the
entire enterprise, thus enlarging quite a lot the scenario of roles and competences
involved, with respect to the technological process. It suggests a preliminary
classification of operations in product development, which includes four kinds of
process:

• Enterprise processes.
• Project processes.
• Technical processes.
• Agreement processes.

As a matter of facts, those processes define the main roles of the operators
involved in the product development within the company and even some typical
areas of competence. It can be appreciated that all the relevant issues are consid-
ered, not only the pure technological assessment of product, but even the interaction
between manufacturer and stakeholders, as well as financial and management
matters (Fig. 3.11).
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The Enterprise Processes, for instance, deal with the Enterprise Environment
Management, which identifies some procedures to support the product life cycle
management. Finances related to the PLM are object of the Investment
Management, while the System Life Cycle Process Management is strictly focused
on the product. In addition, the Resource Management covers the human and
material resources involved, while the Quality Management assures that product
fulfills the requirements of quality.

A key role is played by the Agreement Processes, which are based on the
Acquisition of products and services and on the Supply Process, aimed at delivering
the product.

The project management is based on the Project Processes, which namely deal
with the Project Planning, Assessment and Control Processes. A specific
Decision-making Process is listed and includes the actions performed to choose
between solutions. In this class appear the Risk Management and the Configuration
Management Process, already cited in previous sections. Moreover, an Information
Management Process is used to control and share the information among
stakeholders.

The Technical Processes are composed by eleven items, which are more related
to the activities described by the V-diagram, for instance, although some of the
processes above cited clearly appear in the baseline steps just described.
Particularly, the Stakeholder Requirements Definition, the Requirements Analysis,
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Fig. 3.11 The processes of the systems engineering according to the standard ISO/IEC 15288
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the Architecture Design cover the first issues of the ALM. The Implementation, the
Integration, the Verification, the Transition and the Validation Processes are more
related to the right arm of the V-diagram. The Operation, Maintenance and Disposal
Processes drive the manufacturer in the last activities of PLM.

The same ISO/IEC 15288 Standard identifies the sequence of steps for a generic
baseline which looks like:

Concept ! Development ! Production ! Utilization ! Support ! Retirement

As it could be immediately appreciated by the Reader, the Standard ISO/IEC
15288 covers all the relevant issues of the product development. Due to its contents,
the view offered is larger than the contents of the industrial baseline, since all the
actions to be promoted to support those activities are even cited. This specific
property motivates the adoption of the standard as a framework to support the
implementation of the SE. However, the processes there defined do not allow
immediately to access to some helpful drivelines to perform a preliminary definition
of system goals and related architecture. This goal is achieved through the archi-
tecture framework, being able to express several views of the system, thus driving
the designer to consider all the relevant issues, by different points of view, like
when looking at a physical object.

3.7 The Engineering Methods

As it was previously pointed out, despite the huge development of the SE con-
cerning the model of product lifecycle, the approach and the process, right now a
clear standardization about the so-called engineering methods aimed at defining
how implementing the process was not yet reached. It might be referred herein that
a pervasive activity was recently performed in Europe by industry and academy
within the frame of several projects to develop a common standardized method-
ology of SE, including a deeper investigation about the engineering methods to be
applied. As an example, the above cited ARTEMIS JU Project “CRYSTAL—
Critical Systems Engineering Acceleration” focused on four technical domains like
automotive, aerospace, railways and health care to deploy some common glossary,
methodology and platforms, based on a tested tool chain, to show, through some
industrial demonstrators, the feasibility of such standardization. As the authors
could directly realize, an agreement among several users upon the methods is never
easy, especially when the technical domain provides a consolidated experience and
tradition, being different company by company. Nevertheless, at least at higher
level, when a common Reference Technology Platform was set up, a convergence
could be reached, as it shall be herein briefly described to show the Reader some
typical items of the engineering methods and allow catching the difference between
process and method.
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As Fig. 3.12 shows a straight implementation of the SE process consists of some
phases or issues, like those herein described. A first list includes some methods
concerning the system analysis and design. Each label actually is associated to a
precise list of activities to be performed, and it is linked to the use of some tool or
language. It might be appreciated that items on the left side of the dark area should
be executed in series, since they concur to the trade-off analysis and the verification
described on the right side, being also required inputs for the safety and reliability
analyses. By converse, if one looks at the general issue of the common services to
be exploited all along the product lifecycle development, labels describe once again
some actions, but they are separated activities, to be executed either in series or in
parallel in time.

Some key issues are contained in those methods. In the first phase, the effort
foreseen to pass from the functional models of the technical domain to a larger
simulation including both physical and functional models, i.e., to the so-called
heterogeneous simulation is appreciated. This step corresponds to make tools
interoperable. A crucial task is the process management, which is based on the use
of a platform of tools. Cooperation introduces some issues like security of access
and data storing and sharing. Consistency and versioning must be carefully assured
through a defined and known strategy. Changes introduced by the allowed users
must be listed, motivated, tracked and suitably linked to the continuous updating of
the system configuration. As it shall be further discussed in this handbook, tools and
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Fig. 3.12 Example of engineering methods defined for the aerospace technical domain within the
frame of the ARTEMIS JU EU Program “CRYSTAL”
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strategy for a configuration change management is strictly required in a collabo-
rative environment for the product development, together with some technicalities
of tools to allow the collaborative work.

As soon as one compares Figs. 3.11 and 3.12 a doubt could arise about the
similarity of some definitions. Requirement analysis and verification appear in both,
but a difference holds. In each process, a main activity is foreseen in terms of people
involved, step of development, time to execute the described item. In engineering
methods, the same labels directly bring to actions, tools and outputs. As an example
the method “Analyze requirements” is here discussed.

A preliminary elicitation of requirements should be already done when the
System analysis and design starts. So far, a preliminary critical review of require-
ments is performed to analyze their contents.

A pre-condition for that engineering method is that:

• Requirements were already defined as a result of the elicitation.
• They were stored in a Requirement Management Tool, including their contents

and characteristics.
• An additional information about the requirement quality information was stored

in a different database.

As an input for the analysis each requirement should:

• Be expressed through a native language in some sentences, which clearly
describe the statement.

• Include an identification code (ID).
• Indicate the status and the version.

The activity of analyzing the requirement according to the defined engineering
method consists, for instance, of following actions:

1. The Requirements Analysis Tool (RAT) gets the list of requirements from the
Requirements Management Tool (RMT), by connecting to it first, then
launching a request of service, and the RMT eventually applies some filtering to
select only the requirements object of the analysis.

2. A list of requirements is assembled and sent to the RTA by the RMT.
3. The RTA receives the requirements, then selects the requirement to be analyzed

in detail, then perform the analysis.
4. The RTA eventually modifies the requirement and applies some changes.
5. The RTA launches a service to send the requirement back to the RMT.
6. The RMT receives either a new version of requirement or a new requirement,

and stores it.
7. The new requirement is included or the original requirement is updated and

records describing version, status or the identification code are accordingly
updated.

As a post-condition for this engineering method is that each requirement is either
approved in its original form or modified.
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The output of this activity is similar to the input:

• Requirements are expressed through a native language, they declare a statement
• An identification code (ID) is associated
• Version is updated
• State could be now checked
• Further analysis could add some properties like a type or classification.

The above example simply pointed out as the method includes a precise set of
activities performed by dedicated tools almost like in a protocol of experiments or
an algorithm in calculations. This preliminary work of decomposing the complexity
of the system through process, method and model helps in facing some really
complex systems, but even some steps of the product development. The system
designer should appreciate, as a challenging issue of the SE, the combined activities
of functional/dysfunctional analysis and of the physical behavior prediction, being
modeled through the functional and physical modeling respectively, as a hetero-
geneous simulation. Nevertheless, implementing the heterogeneous simulation
might look rather difficult without a method. Within the frame of the same project
CRYSTAL that issue was investigated and a simplified approach could be included
in the description of engineering methods.

As a pre-condition for a simulation:

• Models should be available in functional and physical (mathematical) forms.
• Goals of simulation need to be defined in advance, together with a test plan.
• Since models could be developed in different languages, a preliminary screening

about the interoperability formats must be provided.
• Each model should be identified by an ID.
• Model version is declared.
• A description of simulation is usually added.
• Properties of the inputs required by the simulation should be provided.

The activity of heterogeneous simulation consists in:

1. Selecting first some suitable criteria for each simulation run.
2. Configuring the simulation architecture, thus applying to functional and

physical behavior, to the environment.
3. Checking the available simulation environments.
4. Selecting the simulation models (e.g. IBM Rhapsody®—SysML functional

model and Simulink® numerical model).
5. Acquiring the simulation environment and resources (computational time or

supports).
6. Running the simulation.
7. Collecting the simulation results.
8. Evaluating those results.
9. Eventually debugging the model.

10. Approving results and reporting.
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As a post-condition of the simulation, several outputs are foreseen:

• Simulation results for a defined set of metrics (e.g. power consumption, power
generation, vibration reduction…).

• Model quality reporting and identified issues with simulation.
• Simulation model, with a list of properties representing the results of the

simulation.
• Eventually, list of properties defined by the interoperability Standard applied to

run the combined heterogeneous simulation.

Similarly, other key engineering methods like verification against requirements
or trade-off of system layouts can be specified by following that approach, i.e.
through a preventive definition of required actions and artifacts to start, contents of
the activity, outputs and additional products.

3.8 The Languages for Systems Engineering

Deploying the process is quite easy once that methods could be completely defined.
Nevertheless, if the numerical modeling of systems can resort to mathematics, either
to describe its geometry, e.g. through some technical drawings, or to predict its
behavior, e.g. in terms of dynamics, stress distribution, electric and magnetic fields
configuration or any other typical object of engineering sciences, the functional
modeling suffered for long time the lack of a suitable tool to describe all of typical
contents of that investigation. Luckily, the development of meta-models based on a
graphical and intuitive language of symbols and blocks could help in making the
functional model, speaking the designer and communicating the users. A preliminary
sketch of some popular languages used within SE is herein proposed. A deeper
information could be found later on, when test cases will be fully developed.

It is known that, in software engineering, the design by objects was successfully
supported by the so-called Unified Modeling Language (UML), which was then
elaborated, enriched and adapted to the system design as System Modeling
Language (SysML). Nevertheless, more recently, new updating and evolutions of
those languages are proposed to more properly fit some specific applications and
domains. Within the industrial engineering, a lack of entities in the original UML
and SysML was clearly found. So far, some research groups are currently working
on both the UML and SysML to introduce some additional tools and somehow
shaping those standards for a more straight use in mechanics, electromechanics and
mechatronics. The Interdisciplinary Modeling Language (IML) or the Automation
Modeling Language (AutomationML) could be examples of those new generation
of communication tools. It is true that their main goal is not explicitly the Systems
Engineering, but much more the technical domains where are currently developed.
Nevertheless, their appearance in the literature of industrial systems engineering
was carefully considered as a symptom of incomplete standardization, as the
development of the Lifecycle Modeling Language (LML), since 2013, can confirm.
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Currently, the SysML is still widely used within the international community of SE,
thus making suitable to focus the attention of this handbook on it, more than on
other languages, like those previously cited. However, a short overview is herein
proposed to catch the context and some limitations in the development of the
SysML.

3.9 Unified Modeling Language—UML

All of the above cited languages share each other some typical characteristics and
contents. They were basically developed within the software engineering to be a
general purpose tool to develop the software and modeling. The UML was origi-
nally proposed and developed by Booch, Jacobson, and Rumbaugh (2005), since
1994, but in 1997 was defined as a standard by the Object Management Group
(OMG), being a worldwide recognized organization within the object-oriented
method, which grew up as a appreciated approach to design. More recently, in 2005
it was approved by the ISO as a standard.

A main goal of the UML is making standard a notation which cannot resort to
mathematics or any other formalized notation to express some artifacts or objects,
as functions, activities, stakeholders or logical architecture of system are. As a
language, it provides a defined notation, based on standard diagrams and modeling
elements, together with suitable semantics and rules to connect the model elements
and give an ordered structure to the described system. Obviously, it was conceived
for developing software, therefore the proposed diagrams were tailored to this
purpose. Briefly speaking, a clear description through a graphic meta-model of the
activities foreseen for the software operation, of its architecture, including single
components and routines, of rules for running and of the interactions occurring
among elements through some interfaces (and even with the user), was required.
Those goals could be reached by defining structured diagrams, whose frame is
described in Fig. 3.13. As it looks evident, this structure highlights the behavior and
the architecture of the analyzed system, as well as their interactions with time, space
and functions performed. It might be immediately appreciated that this

UML - Diagrams
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Fig. 3.13 Typical diagrams of the UML
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interpretation was greatly simplified and simultaneously enhanced by the SysML, to
adapt this language to other kinds and more general systems. Therefore, the
meaning of each diagram described in Fig. 3.13 will not be analyzed right here, as
most of those diagrams are even used within the SysML, being object of next
section.

3.10 System Modeling Language—SysML

The System Modeling Language (SysML) is one of the most well-known languages
that support the specification, design, analysis and verification of systems.
According to the definition of the Object Management Group (OMG), SysML is “a
general-purpose visual modeling language, built up as a UML profile to target
systems engineering. However, the SysML does not provide systems engineers a
way to model both design alternatives and the design objectives for optimization
purposes” (OMG, 2017).

The SysML was developed since 2001, starting from a propulsion given to this
initiative by the INCOSE. It looks like a customization of the UML to adapt the
notation to the SE. Moreover, in 2003 a group of industrial managers and tools
vendors organized the so-called SysML Partners, born as a spontaneous association
aimed at defining a specification for the new language, as it was preliminary done in
2004. In 2006, the OMG adopted the SysML as a standard notation, after a col-
laborative action of refinement performed by several contributors.

The SysML actually is an extension of the UML previously described, which
includes modeling blocks instead of modeling classes. It supports the modeling
activity of requirements, structure, behavior, and parameters to provide a robust
description of a system, but also of its components and of the environment.
Particularly, the SysML defines a notation aimed at describing how the concepts of
MBSE could be visualized as graphical or textual elements, through a simple
diagram. Each block is the basic unit of structure of this model and represents an
element of the system. Through a set of diagrams, being conceived to give several
points of view on the same system, this language allows modeling the system
structure and behavior, as well as the requirements definition and the specification
of some performance parameters.

Four main typologies of diagrams can be distinguished within the SysML,
namely:

• Requirements diagrams.
• Structure diagrams.
• Behavior diagrams.
• Parametric diagrams.
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In addition, behavior and structure diagrams include several other ones, aimed at
showing different contents of the whole information to be collected about the
system definition.

It can be remarked that requirements and parametric diagrams were introduced
in addition to those already present within the UML. They play a relevant role to
connect the system model to the preliminary elicitation of requirements and, on the
other side, to a quantitative modeling of the system behavior and architecture,
aimed at performing a numerical simulation. A sketch of the structure of diagrams
foreseen by the SysML is depicted in Fig. 3.14.

Since those diagrams are widely used to implement the process of SE, a brief
and preliminary description is herein proposed, while a direct application to the test
cases shall show better their peculiarities and details.

3.10.1 Requirements Diagram

The SysML defines a visual and graphical representation of textual requirements
usually collected in form of sentences and classified by a requirements manager tool
separately. To integrate and allocate the requirements, a direct image within the
digital model of the system is needed. This diagram allows introducing the
requirements inside the domain managed through the SysML and performing some
associations between themselves or with other model elements, managing their
changes, through a structured and hierarchical environment. As it shall be deeply
described in next chapter, each requirement must be allocated and satisfied, and
shall be described by a textual statement. It is worth noticing that each requirement
is numbered and referenced, with attributes and properties. The requirements dia-
gram is even used to clearly define the requirements hierarchy, how they are

Fig. 3.14 Diagrams of the SysML
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derived, satisfied and verified, thus providing a suitable gate between the require-
ments elicitation and the system modeling. Figure 3.15 shows an example of re-
quirements diagram, where each block includes the requirement identification and
statement as well as a link to the use case to which is associated.

3.10.2 Behavior Diagram

The system behavior is modeled within the SysML by emphasizing all the relevant
inputs and outputs, to define functions, goals, interfaces and actors, through a
sequence of actions, operating conditions, and even as a function of time. The so-
called behavior diagrams include the use case, the state-machine, the sequence and
the activity diagrams.

Use Case Diagram (UCD). A use case is a description of observable results
assuming a measurable value, for one or more actors, when using the system or
interacting with it. The Use Case Diagram (UCD) basically describes the neigh-
borhoods of the system, being highlighted as a rectangle in the middle of the
diagram (Fig. 3.16), how the system can be used and operated, through several
modalities represented by elliptical call-outs, and the interaction between the system
and some external actors, to be referred as stakeholders, in relation to each use case.
Stakeholders can be human users, depicted as a dummy (e.g. the cockpit crew in
figure) or even other systems, directly interacting with the system analyzed, being
depicted either as a dummy or as a rectangle.

State Machine Diagram (STM). The State Machine Diagram (STM) depicts
the discrete behavior of system, through some finite states, reached after a transition
induced by a dynamic sequence of events, during which operating conditions
change. Each transition is usually activated as the system reaches a certain mea-
surable threshold of operation or behavioral condition, thus leading to the occur-
rence of a defined event, while invariant condition is held for a given state of system
operation.

Fig. 3.15 Example of contents of the requirements diagram
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In Fig. 3.17 a starting operating condition is defined on the upper part of the
diagram, as an entrance, and is worth noticing that the system depicted shall come
back to that point, to exit, at the end of the whole cycle of operation foreseen for the
depicted use case. States correspond to the labels, which catch the system operating
in a temporary stable condition, while arrows describe a transient condition, with
variable parameters which correspond to an event, motivating the switch between
two subsequent states. In some case the state includes other sub-states which are
activated in sequence, as in Fig. 3.17 the inner rectangle.

Sequence Diagram (SD). This diagram describes the interaction among the
actors involved in the system operation, as a function of time, by focusing on the
sequence of either messages exchanged or actions applied between actors and
system. The events occurrence is depicted along the lifeline of system operation,
therefore the diagram shows how processes operate and in which order.

Figure 3.18 shows an example of Sequence Diagram. Several actors are
involved in the described use cases and appear on the upper part of the diagram, like
heads of columns. Time is assumed to be running from the upper to the lower part
of the diagram. Therefore, each horizontal arrow describes a message, or an action
or even a flow of material or power from one actor to another one and to the system,
being expressively located on the right side as last column of the diagram. If the

Fig. 3.16 Example of use case diagram
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Fig. 3.17 Example of state-machine diagram

Fig. 3.18 Example of sequence diagram (detail)
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diagram is read from the top to the bottom, a sequence of operations is identified
both in terms of actor and time at which each one is performed.

Activity Diagram (AD). In this case the main subject is the system itself and its
behavior is associated to activities and operations performed through a sequence,
which is here uncoupled with a specific evaluation of time, while it is detailed
whether each activity is simultaneous (parallel tasks) or subsequent (tasks in series)
with respect to any other one, thus identifying inputs, outputs, interfaces and flows.
Some partition groups could be defined as a set of activity or operation nodes, based
on a set of criteria. They often correspond to some organizational units. It might be
noticed that all of activity diagram definitions already used in the UML even apply
to the SysML.

In Fig. 3.19 a simple example of Activity Diagram is proposed. Action starts at
the upper point, each activity looks like a label inside the diagram, while arrows
describe the flow of activities. They are performed in series considering the upper,
middle and lower blocks, while are done in parallel in the middle set of activities. In
this example, a logic action is foreseen after the three blocks in parallel and allow
deciding whether the last activity should be started or a loop is required.

Fig. 3.19 Example of activity diagram (detail)
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3.10.3 Structure Diagrams

The architecture of the analyzed system is investigated through the structure dia-
grams, sometimes referred to as architectural or constructional. They include the
Block Definition Diagram (BDD), the Internal Block Diagram (IBD) and the
Package Diagram. The block is the fundamental modular unit, being always pre-
cisely defined and used to introduce a logical or conceptual or physical entity, like
hardware, software, data or even a person or a facility. In some cases, the block
corresponds to an entity that flows through the system or is located into its natural
working environment. Each block includes principally attributes (state variables),
operations (behavioral procedures), constraints, ports (exchange of flows with the
external world), and parts (sub internal blocks). Blocks are often used to describe
reusable components, i.e. they can be used in many different systems just by
adapting the model developed through the SysML.

Block Definition Diagram (BDD). This diagram provides a black-box repre-
sentation of a system, as a composition of a main block connected to a set of other
blocks, through a well-defined hierarchy. Main focus of that description are fea-
tures and structural relationships of blocks composing the diagram. This approach
leads to describe the structure and the architecture of the analyzed system.

It is remarkable that, in comparison with the UML2, the SysML BDD redefines
the class diagram by replacing the classes with blocks and introducing the flow
ports. The flow port is a new definition, typical of the SysML. It describes what can
pass through a block (in and/or out), i.e. data, matter, or even energy… In the
example depicted in Fig. 3.20, the structure of a rotor on magnetic suspension is

Fig. 3.20 Example of block definition diagram
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described as a tree of main modular elements composing the whole system.
Interactions mainly flow from the main module towards the smaller components.

Internal Block Diagram (IBD). It is mainly used to define the internal structure
of a system. It describes how the internal parts are interconnected, by resorting to
ports and connectors, and what kind of flows are activated between them. Actually
it depicts the internal structure of a block, by clarifying the interactions occurring
with some other parts of the system and specifying the contents of a block of the
BDD. If one compares this diagram to the same used within the UML2, in this case
the SysML IBD redefines the composite structure diagram by supporting blocks and
flowports.

As an example of IBD, Fig. 3.21 shows a simple diagram related to a single use
case. It is meant that the left side actor inputs a message to start the process.
A check is performed. Functional elements are described by parts, whilst arrows on
the border of each part define the flow direction. Links are used to connect the
elements. It is worth noticing that arrows are encapsulated into defined ports, being
pointed out through some small rectangles. Different functions are allocated to
those parts, and therefore the hierarchy of operation between functional blocks is
clearly stated. The actor on the right side receives the output of this activity
(Fig. 3.21).

Package Diagram (PD). The aim of the Package Diagram is limited to the
modeling activity itself as it represents the internal organization in terms of pack-
ages and elements. Using the Package Diagrams allows organizing the model in
several views and to analyze the system at different levels of abstraction. The same
diagram is also used within the UML language (Fig. 3.22).

Fig. 3.21 Example of internal block diagram
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3.10.4 Parametric Diagram

The Parametric Diagram is used to model some constraints that affect the value
properties of blocks. It enables the integration of SE with the design modeling. It
defines the constraint properties and constraint parameters, as well as their mutual
relationships. In practice, it might be used for a preliminary quantitative analysis of
system performance. It is not present in the UML.

In Fig. 3.23 the proposed example shows the classic example of calculation of
deceleration of a motor vehicle while breaking, starting from the breaking equation,
passing through the relation between acceleration and force, then to the computa-
tion of the required distance to stop the vehicle. Each block receives some para-
metric inputs, elaborates a calculation and provides some preliminary results, to
verify the requirements allocated. Links are used to describe the path followed and
blocks to represent rules and computations.

All those diagrams allow modeling the system and perform the functional
analysis, according to the methodology applied. Nevertheless, it is clear that a more
quantitative modeling could be required for a deeper investigation, being provided
by several numerical models available in the engineering science. When the two

Fig. 3.22 Example of package diagram
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worlds of functional and numerical modeling, or better physical in this context, are
effectively connected to share data and information, and both are linked to
requirements, a complete heterogeneous simulation of the system behavior can be
performed and the product design finally assessed.
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Chapter 4
Systems, Customer Needs
and Requirements

Abstract A preliminary and relevant step of the whole process includes a complete
collection of customer needs and a suitable elicitation of requirements. This activity
is never trivial and requires to be suitably formalized. This is done by resorting to
the test cases of this handbook. In the meanwhile, the role of stakeholders is even
investigated and defined. Requirements are then defined, classified and categorized
for a better implementation of the MBSE. A direct implementation of requirements
analysis is performed for the two examples.

4.1 A Couple of Examples to Understand

The Systems Engineering includes so many contents and practical issues that one
might find difficult understanding its deployment without a direct application to a
intuitive test case. Therefore, in this handbook, two real applications are proposed
to show the Reader how the discussion of some main contents of this approach can
be easily understood, even in case of a product coming from a material processing,
as it happens in mechanical and mechatronic engineering.

The two cases selected have a different profile. One could be referred to as
didactic, since it comes from a real industrial application, but it was developed just
preliminarily, i.e. only up to define together with the customer some general issues
of design. It might be considered as a simplified model, but it looks suitable for a
preliminary understanding of topics explained in the handbook. By converse, a
second test case, to be referred to as industrial, was selected to show some typical
issues of the system integration within an industrial framework, aimed at providing
a system model suitable to be assessed in tight cooperation with all of partners of a
manufacturing consortium and to deal with the actual depth of technical problems
faced during the product development.

The didactic test case is basically a rotating machine for shaping the steel wire
rod produced by a rolling mill. The industrial case is related to the integration of an
Ice Protection System (IPS) on a civil aircraft for passengers’ transportation. Those
two examples were actually developed by the authors in a real industrial context,

© Springer International Publishing AG 2018
E. Brusa et al., Systems Engineering and Its Application to Industrial
Product Development, Studies in Systems, Decision and Control 134,
https://doi.org/10.1007/978-3-319-71837-8_4

69



www.manaraa.com

thus experimenting some crucial issues of the MBSE activity. Moreover, in case of
the IPS, the main issues are the design and integration of a system within the larger
complexity of the aircraft. The behavior of this system is typically related to the ice
accretion and either how ice can be cracked and expulsed (in de–icing) or how its
formation upon the aerodynamic surfaces can be avoided (in anti–icing). Two
interesting features of this example concern the need of a trade–off among different
technologies for selecting the system configuration and the mechanism of anti/de–
icing and the strong interaction between the modeling of the system and of the
environment in which it works, being related to both the flight and the weather
conditions. By converse, the rotor, used as a coiling system for shaping the steel
wire rod, shows three interesting topics. It is clearly a system connected to a
system–of–systems like the mill plant is, thus exciting some investigations about
the interaction among subsystems. The rotor exhibits a structural behavior which
must be foreseen and properly simulated, through a physical modeling. Solutions
proposed in that case were strictly related to structural mechatronics and active
vibration control, thus giving the possibility to investigate the real meaning of
smartness and some typical requirements associated.

Considering the methodological contents of those examples, in the didactic one a
clear reusability can be exploited if, for instance, the rotor is assumed to be actively
suspended through magnetic bearings and, instead of the coiling system, the model
is applied to a flywheel for energy storage. In the industrial test case a significant
issue was the final process of SE, implemented to cope with the different approa-
ches applied by several partners of the consortium involved in this design activity.

4.1.1 Didactic Test Case: A Coiler for Wire Rod Production

Several mechatronic solutions are currently investigated to reach a higher level of
innovation in industrial equipment, by resorting to a smart energy conversion.
A mechatronic approach is just applied to deploy the MBSE in the test case of the
coiling system for steel wire, even and simply referred to as coiler. This example
can show how the intrinsic complexity of mechatronic design of systems is
nowadays often faced through the SE. Even the meaning of smartness requires
often to be clarified and suitably interpreted. It involves the dynamic behavior of
systems.

Some preliminary information about the operation of storage of the steel wire
rod applied to the steelmaking plant are introduced in Table 4.1, to describe some
general details of the system.

The technical problem can be briefly described as Fig. 4.1 shows. Wire rods and
bars are cut and coiled at the end of the steelmaking plant, after rolling, in the
finishing area, just before to be stored and delivered to customers. The wire rod
reaches the end of the line fairly fast to assure a large production per hour, up to
almost 130 m/s. Within few meters it is required that it stops and is completed
coiled. Basically, the translational motion has to be converted into a rotational
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motion, before stopping. To perform this action, a so–called laying head pipe is
used, thus allowing to shape the wire rod into a coil and transforming the trans-
lational speed v into a rotational speed x, which depends on the radius of coil.
Practically speaking, a rotating and tubular shaft is equipped at one end with a sort
of conical head to allow the wire rod inletting into the rotor and coiling over the
surface of the conical head, thanks to the effect of rotation at fairly high speed. To
assure a continuous delivery, the circumferential speed of coils should be at least
equal to the translational speed v. Coils are then stored and transported to the stock,
before delivering. The laying head is a crucial device in this operation, since it

Table 4.1 Typical properties of the coiler system for steel wire rod

Description Value Units

Maximum speed 130 (current record) to 150 (perspective) m/s

Diameter range of wire rod or bar 4–65 mm

Utilization of the product line Up to 90% of time

Coil maximum weight 3 (min diameter) to 4 (max diameter) tons

Coil maximum outer diameter 1–1.25 m

Rolling maximum temperature 900 °C

http://smt.sandvik.com/it/applications/wire-rod-rolling/ as is on December 11th 2016
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Fig. 4.1 Principle of coiling of the steel wire rod in rolling mill
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rotates quite fast and is largely loaded, thus undergoing some operating conditions
which induce a severe wear of materials and unbalance for the rotor and the
suspension system, to be carefully designed and monitored in service.

4.1.2 Industrial Test Case: De-icing or Anti-icing System
for a Commercial Aircraft

The industrial example belongs to the aeronautical engineering. It concerns the
development of the Ice Protection System of a commercial aircraft classified as
Very Light Business Jet (VLBJ). The process herein proposed is aimed at showing
only a preliminary high level development of this subsystem, but the depth of
analysis will be sufficient to deploy the MBSE approach as it does within a com-
pany. It has to be noticed that the example describes some typical issues of this
activity, but it does not correspond to the real certified process deployed by the
manufacturer nor by the suppliers, since they are covered by non-disclosure limi-
tations. Nevertheless. some typical requirements of the whole aircraft can be
introduced in Table 4.2 to develop the models of the de–icing or anti–icing system.

The above mentioned aircraft must fulfill the requirements of the Airworthiness
Agency to receive the Airworthiness Certificate before entering into service. The
de–icing system is strictly required to operate the aircraft during the flight in all of
environmental conditions, seasons and altitudes.

Moreover, a selection of technologies can be evaluated to design this system,
basically by resorting to a pneumatic device equipped with inflatable boots, elec-
trical systems based on electro–thermal energy conversion, or even on a heat
exchange realized by driving a flux of warm air near to the aerodynamic surfaces.

Table 4.2 Main properties of the Very Light Business Jet (VLBJ) used as an example for the
deployment of the MBSE process

Description Value Units

Maximum Take–Off Weight (MTOW) Up to 4500 kg

Autonomy (maximum operational range) Up to 2000 km

Take–off field length Up to 1100 m

Landing distance Up to 1500 m

Ceiling 12500 m

Never Exceed Mach 0.65 Mach

Thrust (for each engine) Up to 7 kN

Max Payload Up to 600 kg

Passengers Up to 4

Pilots 2
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This selection requires a preliminary functional and operational analysis to define
limitations and performances of each solution.

As Fig. 4.2 shows the de–icing system basically is composed by some devices
distributed on the aerodynamic surfaces of the leading edge of wings, horizontal
and vertical stabilizer, as well as on engine intakes. The interaction with other
systems is quite critical, since a certain amount of power should be used, reducing
the level available for all the other functions and for propulsion and to avoid the ice
accretion or to remove the ice.

4.2 Implementation of the MBSE

In the following sections and chapters, the two above mentioned test cases will be
used to provide a direct example of implementation of the MBSE. Obviously, the
main figures described in the above sections are usually found as a result of the
exploration, although in this case they were disclosed to make the Reader aware
about the technical domains of the proposed examples. By the way, a challenging
issue in the implementation of the MBSE consists expressively in avoiding as much
as possible to resort to some known set of parameters, which describe the state–of–
the–art of the product object of the development process, and in making the process
as far as possible blind with respect of the tradition of the technical domain.

The didactic test case will be developed by resorting to some software kindly
supplied by PTC, to develop the requirement analysis and the whole ALM activity,
up to the design synthesis. A mechatronic solution based on the active magnetic
suspension technology will be developed and its limitations and advantages even
discussed. In this example, rather than the trade–off activity, the system integration
will be investigated and the verification, validation and testing, to be performed
through both numerical and experimental methods, will be considered. As it was
previously described, a short overview on a straight reuse of models for a different
device aimed at storing the energy through a flywheel system will be introduced.

Fig. 4.2 Rough sketch of the
Very Light Business Jet
(VLBJ) used as an example
for the deployment of the
MBSE process
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The industrial case will be used first to describe the customer needs and the
standard requirements in a large production, then to investigate the steps of both the
functional and physical analyses. Some software tools will be used, particularly the
dedicate tool kits kindly supplied for this redaction by the IBM Ltd. In addition,
some examples of interoperation with Matlab/Simulink® will be even discussed.
The main goals of this implementation concern the trade–off of the system con-
figuration, the refinement of requirements and the integration within the aircraft
model, with the aim of exploring some issues related to safety and reliability.

4.3 Identification of the Customer Needs

4.3.1 Needs Versus Requirements

As the so–called “V–diagram” even shows, a first action performed in deploying
the MBSE is a bright identification of the customer needs and of all the stake-
holders. How this action can be done looks never trivial, while is crucial for the
following steps of product development. A typical mistake in applying this
methodology consists in assuming that needs and requirements are coincident.
Actually, needs define the product to be validated at the end of process, while
requirements specify, at different levels, their implications in terms of functions,
operations and architecture, to cite the most important issues, in relation with
several boundary conditions, and particularly the technical standards. It could be
told that customer needs are somehow expectations roughly expressed, while
requirements are like a translation into a precise, complete and unambiguous
technical communication written in a proper language. Requirements have to be
allocated on functions, then on subsystems, components and parts. A clear trace-
ability is assured, but elicitation of requirements might be assessed in some steps,
through a refinement which can be performed by resorting to the functional and
physical analyses. A unique action of requirements elicitation is never complete nor
possible, in presence of complexity, therefore a recursive approach has to be
implemented. This process usually drives first to a preliminary design of product,
then a further investigation of detailed requirements can be performed.

4.3.2 Looking for the Customer Needs

The customer needs are often identified through a direct interview, but even through
a preliminary definition of a commitment document, like in technical domains
related to defense. A standard guide to catch the needs of the customer is not yet
assessed, although some experts are able to follow a main driveline to select and
collect the real needs among a number of preliminary data. Nevertheless, the
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architecture frameworks previously described can help in defining the needs by
looking at the system capabilities to be exploited. They can be explored by resorting
to an assessed approach like the UAF, through the matrix of capabilities. However,
if a commitment document is not required, a simpler description can be performed
by connecting each task of the interaction between stakeholder and system to the
real interest associated, through a classification which points out the level of priority
perceived. The above mentioned approach might lead to a structure like that
depicted in Fig. 4.3.

If the different tasks and interests respectively are analyzed, the needs could be
better identified. Moreover, potential conflicts or synergies might be even detected
(Fig. 4.4).

4.3.3 A Systematic Approach to the Identification of Needs

It should be immediately realized that this action could be poorly driven by a
precise list of possible items. Nevertheless, this is never true, if a business model for
the product under development is foreseen. Particularly, it is important to
distinguish:

• New version of an existing product and completely new systems never appeared
on the market.

• Single product from production in series.
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• Quality products aimed at satisfying a quite selected audience of customers,
perhaps even keeping the price not so low, such as for mass products, where
quality is related to the number of series manufactured but at lower cost and
price.

• Time to market and time on market of this product.
• Service, maintenance, distribution items.
• Level of connectivity after market with manufacturer.

All those options could identify a certain target of market, which is related to
some specific needs, being typical of a selected population of customers. In this
selection, there are some relevant issues to be considered, that might help the
identification of needs.

As it was recently expressed in some popular examples (Michelli, 2016) there
are some key issues to be considered in this detection of customer expectations.

• Assumption that customer needs are essential in product development and never
aside of the product lifecycle.

• Creation of a vision about the customer experience, by defining the current state
of a product, the new expectations and the future targets.

• Interpretation of the urgency of a given expectation to assess a suitable time to
market and assigning a priority to the need.

• Consideration of the impact of that need on the current organization of the
design and production.

• Direct confirmation of the stakeholders about the consistency of the customer
needs identified.

• Assessment of a systematic approach to innovate the product according to the
customer needs (and the SE is this kind of approach).

• Listing and consolidation of the needs defined by writing all for next steps of
development.

• Simultaneous identification of some metrics to check the correspondence
between the final product assessment and the customer needs through a detailed
validation.

Those items may be used to drive the interview to the customer. In case of a
product coming from a material processing, obviously, some typical issues to be
explored concern:

• Layout and architecture of the new system.
• Materials.
• Context where the system shall be operated, mission, scenarios and goals.
• Quality of product.
• Safety and security.
• Cost, feasibility in manufacturing and sustainability.
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4.3.4 Source of Needs

The criteria above mentioned meet a second kind of categorization which looks
helpful in revealing the level of importance of each need and the possibility of
negotiation.

Needs are basically related to:

• Customer.
• Technical standards.
• Constraints, typical of the technical domain or of the manufacturer’s practice.
• Key features to innovate the product (innovation targets).

The priority of needs is consequently defined. The customer expectations and the
innovation targets have the highest priority because of their strategic effects, but are
often negotiable. The practice of the technical domain looks somehow less influent,
but in several cases it represents the state–of–the–art of that industrial field, thus
introducing a number of limitations, which might be even and simply induced by
the constraints imposed by the facilities owned by the manufacturer. The require-
ments of technical standards play the role of law, which must be fitted by the
manufacturer, without exception, because of the product liability.

The above mentioned identification of need source can help in perceiving the
level of innovation associated to the new product. A very rough interpretation could
see in each innovation target a strong pull effect towards a new generation of the
designed product, while constraints imposed by the technical domain or directly by
the manufacturer look like a brake to a straight innovation activity. In some cases
the customer needs are quite different from the known requirements of standards,
which might represent the tradition. Provided that this interpretation cannot have an
absolute impact on the actual indexation of the added value of the new product, a
preliminary impression could be get from the number of needs detected in each of
those four categories and depicted like in Fig. 4.5. That representation allows
measuring the balance between innovation and tradition in the system development,
simply by comparing the number of needs related to each type.
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4.4 The Stakeholders

To easily cope with the identification of needs, a first action to be performed at the
beginning of the whole process is defining who are the stakeholders, being usually
defined as “either people or systems having some kind of interest with the system
analyzed” (Walden, Roedler, Forsberg, Hamelin, & Shortell, 2015). If they are clearly
identified, an immediate realization of the interface connecting the system to each one
allows exploring the systems functions and somehow even its neighborhoods.

It is worth noticing that stakeholders could be at higher levels the customers
themselves, thus driving the identification of needs. In some other cases they may
be operators and systems usually connected to the main system to make possible its
operation.

In software engineering, for instance, interests and links are easily detected,
since usually the stakeholder sends either a request or a command to the system,
which then replies by giving a feedback based respectively on a data transmission
or an action. In a industrial context, a typical matter of misunderstanding in systems
manufactured through a material processing is the role of some actors, who do not
have a specific interest in the system, but are simply connected to it. This case is
quite often found, as in the two test cases. They could be referred to as “shadow
stakeholders”. They appear, but their relevance is sometimes higher when a dys-
function occurs than in nominal behavior.

A simple example is the tank used to store the fuel into the aircraft. The fuel
system doesn’t ask the tank to store the fuel, but just sends it to the tank, during
refueling for instance. Therefore, the tank seems free of interests in the system
operation, and it could be either included inside or kept outside the neighborhoods
of the fuel system. When it is interpreted as a specific subsystem, the connection
between fuel system and tank doesn’t require a real request to start the storage and it
is never based on a pure transmission of data, but on a physical motion of fuel
towards and from the tank. However, in dysfunctional analysis, a damage in the
tank structure might cause a spillage of fuel and a severe risk of fire as well as a
problem for the flight autonomy of the aircraft. In this case it is not so difficult
generalizing the role of that stakeholder, since instead of having the tank asking to
be filled by fuel in refueling, it is the fuel system that performs this operation as
well as it autonomously performs the defueling. Nevertheless, in deploying the
MBSE, this interaction often makes system engineers somehow confused.

The role of the electric power supplying is even more relevant in many systems.
Very often professionals are prone to say that power supplying is never a stake-
holder, but just a system being connected and naturally supplying energy without a
specific request, thus neglecting to include it into the system model. It is very well
known in steelmaking plant that power supplying not only is critical for the need of
energy, but even because of the dynamic behavior of the network connected to the
plant, which might affect its performance and safety, due to some anomalous
behavior, like the phenomenon of flicker, whose symptom is a large fluctuation of
voltage and current.
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4.4.1 Didactic Test Case: Needs and Stakeholders

To apply the above proposed concepts a first test case is herein discussed. The
owner of the steelmaking plant listen to the main customer. After a preliminary
interview, a scenario about the needs could be defined as follows.

A modular system has to be integrated with the plant, at the end of the rolling mill train,
being able to introduce a suitable angular speed to convert the translational motion of the
wire rod into a rotational motion. This motion has to be compatible with the speed of the
production line. The system has to preserve the wire rod from any damage and to prepare it
for a safe packaging in coils, to be stored and then delivered. Modularity of the coiler
system consists of having a first “laying head”, being dedicated to the spinning of the wire
rod and a “coiler”, being devoted to store the coils and to build up the package. The system
has to be easily and safely operated. It is required that it can rotate up to a given angular
speed, within a defined unbalance condition constraints, without structural failures. It is
even required that the laying head can stop, in case of emergency, and that it behaves as an
adaptive and actively controlled system, able to change its configuration, within some
defined limits of operation, to face to some abrupt variation of the working condition,
associated to the production of the rod. Moreover, this system has to be autonomous and
standstill configuration should be possible, in pause. Additional constraints are maximum
weight and volume, environmental compatibility, power consumption, maintainability,
reliability, process monitoring… A suitable lubrication is required or even no one, no wear,
no contamination…

As it clearly seems from previous investigation the customer needs are expressed
in terms of qualitative targets, somehow insufficient to define a list of specification
to design the new product. Therefore an immediate elicitation of requirements is
useful to transform that information into a corpus of real technical specifications.

Before proceeding with this action, a preliminary identification of some main
stakeholders is strictly required. This can be done by interacting once again together
with customer. A first impression of the main idea committed to this example is
provided in Fig. 4.6. The system looks like the assembly of two modules as the real
coiler and the storage device. This shall be immediately matter of discussion, since
system neighborhoods need to be defined. It is possible to consider that it is

The systemThe rod

The operator

The rollingmill

The building / environmentThe powerlineThe monitoring and 
emergency system

The storage

Fig. 4.6 Impression of some main stakeholders of the didactic test case
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interacting with the rolling mill, as a part of it, with the rod, which is processed, but
even with the main monitoring system, located at the control tower, with the power
line, with the environment, corresponding to the building, with roofs, frames and
floor, and with some operators, in different operating conditions, even in
maintenance.

In this example, it was decided to limit the system under development to the real
coiler, referred to as laying head, while the storage device could be considered as an
additional stakeholder, quite close to the system. According to some remarks
previously written among the stakeholders, the powerline and the building might
look like as a shadow–type. Particularly, the floor where the system is constrained
does not ask to be connected, but it has a relevant influence on the system behavior
in terms of vibration, or even seismic power transmission, and of electrical
grounding and risk of short–circuit, as it shall be further explained in next sections.

4.4.2 Industrial Test Case: Needs and Stakeholders

In case of the Ice Protection System, for a commercial aircraft, some needs can be
clearly defined since the beginning of the product development.

The environmental and weather conditions on ground and in flight might induce the ice
accretion phenomenon and significantly affect the aircraft behavior, especially in terms of
aerodynamic efficiency. Therefore, in case of an anti–ice system, the main need is that an
effective action supported by a given amount of power could inhibit the ice accretion on all
the most important surfaces of the aircraft and a monitoring system could eventually warn
about any abnormal accretion; by converse, in case of a de–icing system, the ice accretion
should be easily and quickly detected and localized, and, upon either an automatic or direct
command of the crew, the system should remove promptly and effectively the ice, without
any risk for the aircraft, the other systems and the people. Power used to perform either the
anti or de–icing operation should be compatible with the overall power balance of the
aircraft, i.e. with the other main functions of flying, maneuvering and on–board systems
operating. Additional needs concern maximum weight, electromagnetic compatibility,
maintainability, reliability, availability and safety as well as cost and sustainability (no
contamination of the environment)…

In this case, some typical stakeholders are those of the technical domain of
aeronautical engineering:

• Pilot: the system is operated by the pilot under a direct command or even
automatically, but always keeping the option of a direct control on its activation
and deactivation. Interest of pilot is controlling the system operation.

• Environment: the ice accretion is directly connected to the weather and envi-
ronmental conditions. In this case a bright interest cannot be defined as is, but
environment might cause and affect the ice accretion on the exposed surfaces of
the aircraft, thus allowing considering that a sort of interaction is the deposition
of ice on the aircraft structure.
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• On–board flight management and control system: it needs to monitor the ice
eventually deposed on the aircraft structure and to forecast its accretion.

• On–board air data system: it acquires and sends data useful to operate the anti/
or de/icing action.

• On–board power supplying system: depending on the technology applied, some
power is needed by the system to operate and this might provide the required
amount (for instance electric power…).

• On–board actuation supplying system: the anti/or de/icing operation is surely
based on a flow of air, heat, current… thus requiring a suitable connection to the
on–board system able to provide it. In case of boots the system shall use a
pneumatic actuation, based on some air coming from the turbofans, while, in
case of electro–thermal heat generation, the electric system shall provide the
required power.

4.5 The Role of Requirements in the Product Development

Converting the needs identified into some clear and executable requirements is a
key issue of the concept design activity. It was demonstrated1 that the largest part of
failures occurring in technical systems are due to:

• Incompleteness of requirements.
• Lack of user involvement.
• Unrealistic expectations.
• Uncontrolled changing of requirements.

While evident benefits are associated to:

• Clear statement of requirements.
• User involvement.
• Realistic expectations.
• Change configuration and requirement management.

According to that analysis the Systems Engineering suitably drives the product
designer to reach all the goals previously described:

1. Elicitation of requirements is performed iteratively by resorting to both func-
tional and physical analyses, after a preliminary definition, through meta-models
and numerical models, until that a suitable definition could be found.

2. Requirements are written by carefully considering the customer needs previ-
ously identified.

1Scientific American, September 1994 and Standish Group 1995, 1996.
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3. Feasibility of product corresponding to needs and requirements defined is
preliminarily checked, then deeply investigated through the verification and
validation process.

4. Changes are tracked and a configuration change management is nowadays
implemented to avoid any anomalous modification which might introduce a risk
of failure.

As the Reader might immediately realize, requirements have a precise role
within the lifecycle product development:

• Project planning: requirements are often used to define a path to be followed
during the deployment of the design activity, since the need of allocating their
contents to functions, elements and parts intrinsically motivates the designer to
find the product configuration by checking that all requirements could be cov-
ered and allocated.

• Risk prevention and management: requirements usually describe and prevent
some unsafe, failure or damage events, thus allowing to perform a suitable risk
and safety analysis.

• Acceptance: they are written to allow the product to be positively evaluated in
tests, homologations and even when it is released on the market.

• Trade-off of layouts: among different configurations proposed by the designer
during the project deployment requirements allow selecting the most suitable
one, depending on how it fits their prescriptions.

• Change control: changes are acceptable only when fitting requirements, thus
assuring to be compatible with safety, quality and cost control.

4.5.1 Definition of Requirement

The specialized literature offer many definitions of requirement, as a starting issue
of design. Among all, the one proposed by the IEEE in 1998 might provide a
significant overview upon his main role:

Requirement is a statement that identifies a product or process operational, functional or
design characteristic or constraint which is unambiguous, testable or measurable and
necessary for product or process acceptability.

As a statement requirement is a textual expression, even sometimes described
into a tabular form or diagram, defining a concept being traceable and manageable.
Product is something built in response to requirements and which has to be used to
reach some goals, while process is a procedure for using things being built up for
this purpose. Particularly, in material processing, process is a sequence of actions
performed to shape, create, handle and make things to be then used.
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It can be immediately noticed that the main difference between need and
requirement, according to the INCOSE handbook (Walden et al., 2015), within the
Systems Engineering is that:

• Need is some capability of system desired or required by a stakeholder.
• Requirement is a formal structured statement that can be verified and validated

within the life cycle product development.

To proceed with the so–called elicitation of requirements, it is worth noticing
that some issues have to be considered. First at all, contents of requirements are
relevant for a complete definition of system properties, however a preliminary
classification of requirements helps in this activity and even in their allocation.
A crucial issue is the granularity of requirements, i.e. how deep is the level of
information concerned. It is important that this level is the same for all the
requirements or, better, that different levels are defined to go deeper in detail, by
organizing requirements as master, son, grandson, like in a waterfall of information.
Very important is the syntax to be used to assure that requirements are clear, simple,
never ambiguous.

It is often referred to “smart” the complete list of attributes of requirements,
since SMART corresponds to an acronym stating for Specific, Measurable,
Achievable, Relevant and Traceable.

Those attributes specifically mean:

• Specific: it must concern only one aspect of the system design or performance
and must be expressed in terms of need, never of solution.

• Measurable: performance is expressed objectively and quantitatively and an
exact pointing requirement can be tested thus verified.

• Achievable: it must be technically achievable at costs considered affordable.
• Relevant or Realistic: it must be appropriate for the level being specified.
• Traceable or Time bound: lower level requirements must flow from, and sup-

port, higher level requirements, but even realization should occur in the due
time.

4.5.2 Classification of Requirements

As it was previously said for needs, even in case of requirements it is never so
trivial listing their contents easily and completely. An important task, particularly in
case of material product, is defining different classes to include each requirement
into a specific category or class. This helps quite a lot the investigation, but very
often it doesn’t seem so easy.

A preliminary and very well-known classification is based on three main
categories:
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• Functional requirements: they answer to the basic question “what the system
shall do in its operation?”, thus identifying functions and flows of activities.

• Operational requirements: they answer to the basic question “what kind of
usage is foreseen for this system?”, thus leading to define the external actions
applied and the main usages of system.

• Constructional (or architectural or even structural) requirements: they answer
to question “what the system shall be made of?”, thus focusing on the
decomposition and the configuration of system.

Those three main categories are always considered in the requirement analysis,
but very often they do not cover the needed number of visions, which may better
describe the system. Therefore, a preliminary useful activity performed by the
designer is listing a suitable number of classes, being related and strictly sufficient
to give a complete impression of the system within the context of a typical technical
domain it belongs. To go deeper into this investigation a better knowledge of the
three main classes is required, as is depicted in Fig. 4.7.

In the specific case of product coming from a material processing some classes
have to be considered, as they are listed in Table 4.3. As it could be easily noticed,
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Fig. 4.7 Main classification of requirements and related contents

Table 4.3 Example of classification of requirements applied to a material product according to the
SEBoK guide (Pyster et al., 2012)

Classes of requirements

1. Functional req.
2. Performance req.
3. Usability req.
4. Interface req.
5. Operational req.
6. Modes and/or States req.

7. Adaptability req.
8. Physical constraints
9. Design constraints
10. Environmental conditions
11. Logistical req.
12. Policies and regulations
13. Cost and schedule constraints
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the classes and subclasses usually introduced are many. Some key issues are always
considered, as the performances of system, its modes and states during the oper-
ation, the safety and, where applicable, the security. Typical of material product are
the usability, which defines all the characteristics to make handling, usable and
manageable the system, but even the interfaces which allow integrating the different
parts of the system to reach the final assembly. Moreover, an important target is the
packaging, together with the requirements for transportation, which might signifi-
cantly change the contents of requirements.

The description of Table 4.3 points out that, after a preliminary rough distinction
among functional, operational and constructional, every project needs to deploy a
more complete list of classes, to help the product development. This activity is quite
related to the technical domain involved. Each domain tends to resort to some
traditional schemes of requirements, although in several cases the model based
approach was never applied yet. Those classes can be further discretized as a tree,
thus allowing including some relevant goals like reliability, availability, main-
tainability and safety (RAMS) and the product quality.

4.5.3 Syntax and Attributes of Requirements

As a verbal statement, the requirement should be written by applying a standard
syntax and avoiding as much as possible what might depend on the designer who
wrote it. Moreover, to be transformed into a manageable digital record, it is strictly
important that contents could be simple and schematic. In Systems Engineering
those goals are achieved by resorting to a fairly standard description of require-
ments like the one depicted in Fig. 4.8. Several elements are included. After the

Requirement
Short descrip on

Id= ….

Text = “System shall be operated a he
defined speed of…., in …. regime, ….”

Priority = 

Allocated by =

Risk =

Status = 
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.REFERENCE NUMBER

(ROLE or FUNCTION)
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(PROPOSED – VALIDATED –
TESTED – DELIVERED)

(ANALYSIS – TEST –
DEMONSTRATION)

Fig. 4.8 Example of main
attributes of a requirement
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text, which describes the main statement and an identification number or code
which allows allocating and linking the requirements to the other artifacts of the
MBSE, the priority of requirement is defined, together with the risk associated in
case of lack of fulfillment. Allocation is even declared as well as the status of
requirement within the product development process and, finally, the level of
verification. Authors are often enclosed into a tabular representation of the
requirements.

A syntax is also applied to make clear the text of requirement. Among a number
of rules, just to introduce this topic, few of those might be considered.

A requirement must state:

• Who is responsible.
• What shall be done.
• Or how something shall be done.
• Or even under which constraints something shall be done.

The usual format of requirement is “who shall what” and active forms are
preferred to passive ones. In previous test case, the following statement can be
found: “The system shall adapt the switch–off time to the rate of ice accretion”.
Therefore the literature suggest of using:

• For requirements “…shall…”.
• For facts and declarations “…will…”.
• For non-mandatory provisions “…should…”.

By converse the use of “…must…” is definitely deprecated. Those rules allow the
Reader catching the real purpose of sentences when they are read.

4.6 Tools for Writing Requirements

The requirement analysis basically resorts to three tools already developed and
available on the market: a manager software, some quality and authoring suites and
some software for functional analysis, where requirements are imported and allo-
cated to functions and system elements. This one will be deeply described in
following chapters, while the two first above cited are briefly herein introduced.

4.6.1 Requirements Manager

Listing requirements seems quite simple in the provided examples, because of the
fairly small number of items. In complex systems this activity can be fairly heavy
and rather difficult. The effort associated with the organization of the requirements
specification, together with the classification of the statements themselves and their
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management during the design process requires a systematic approach for the
definition, collection and update of requirements, which is usually faced with a
model–based approach, especially for the design of complex systems. Therefore
some helpful tools are currently used to enhance the effectiveness of design in
describing and collecting the requirements. This generally leads to the adoption of a
centralized requirements database, capable of keeping trace of changes and updates
for different classes and at several levels. This hub is conceived to allow accessing
from the design tools, that shall be used to characterize the system architecture and
its behavior, starting from high level requirements and gathering at the same time
new requirements, generally at lower levels, which are the results of system
modeling activities.

As a consequence, the main features of such a database shall be:

• Robustness, when identifying uniquely the requirements and storing their
changes during the project, by reducing some mistakes eventually arising from
the user input.

• Flexibility in terms of customization of classes and levels of requirements,
depending on the involved engineers and the stakeholders needs.

• Simplicity, to allow a high portability of the environment where requirements are
defined, which shall be user friendly.

• Reliability, to guarantee a low probability of loss of data or generation of wrong
traceability paths.

• Interoperability, with the widest range of tools, in order to be able to commu-
nicate with the largest possible tool chain during the whole system lifecycle.

• (Two–ways) connectivity, assuring a smooth access to the data in both directions
(input/output).

• Security, usually implemented with a strong authentication strategy of the users
and a specific identification of roles to segregate data, to assure that each profile
may have access only to the information needed, while protecting the confi-
dential data being out of the scope of that role within the project.

An example of implementation regarding the creation of a requirements database
in different contexts, through the IBM Rational DOORS® tool, will be described in
this handbook and applied to the test cases. Some of the aforementioned charac-
teristics will be highlighted, showing the practical implication they have within the
tool. The definition, collection and updating of requirements is performed in some
steps, starting from a high level requirements specification, being the first result of
the elicitation process driven by the stakeholders needs.

It might be remarked that the structure of the requirements specification and
some basic features of the tool will be herein shown, while the updating activity and
the traceability process will be described later, i.e. within the development of the
system design, through the Operational, Functional, Logical and Physical analyses,
as are described in Chaps. 5–8.

The IBM DOORS® and its updated platform IBM DOORS Next Generation or
DNG® allow structuring the information related to the requirements elicitation and
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even converting into a word processor like Word®. It is worth noticing that the
classes of requirements are evidenced in folders. Some colored flags allow the user
detecting the status of each requirement (Fig. 4.9). As it can be seen, the main
interface contains the tree of contents on the left side, while the so-called objects
appear on the right. Objects represent the row of the workspace, which basically are
the statements. Each object may be characterized by several attributes representing
the column of the requirements area. They include the identification codes/numbers,
being like a name for each requirement to be used in allocation, a flag suggesting
the status of requirements, the statement itself, a label declaring the class, the level
and some optional items as markers and check numbers.

If one looks at the digital content of that file, the so–called “System
Requirements Specification” or SRS is a crucial product of the model based ap-
proach. It might be realized that both the statements and how they are written within
the frame of the requirements manager tool are issues for the information related to
the set of requirements.

The SRS is relevant because:

Fig. 4.10 Typical requirements related to the smartness of systems as they are identified in the
literature
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• It collects the system requirements.
• The list of requirements is uniquely ordered and numbered item by item.
• It is digitalized and can be easily shared with other users.
• It can be imported in another working environment.
• It applies a standard form to be easily understood by users.

If the requirements management is performed quite straightly through the tool, a
critical engineering activity is the definition of the specification architecture, i.e. of
the classification of requirements. It depends on the context and on the engineering
domain in which the design process is developed. Classes are very important not
only to define the requirements but often even to organize people and resources
within the design group, especially when it doesn’t correspond to a Company but
more to a consortium of manufacturers, as it happens in the aerospace domain. This
issue is herein practically deployed for the two test cases to show the Reader how
an assessment of classes and categories is performed.

4.6.2 Requirements Quality and Authoring Suites

Another set of tools is nowadays proposed for the requirement analysis. It includes
some software for managing and checking the quality of written requirements, for
authoring and writing or to perform a semantic analysis. An example is proposed by
the REUSE Company. The main assumption is that writing some complete, correct
and consistent requirements is rather difficult and long. To reduce the time spent in
developing the project, those tools help in facing three main issues of requirements:

• Correctness: they check that requirements are easily readable (short, simple),
unambiguous and cited properties are measurable.

• Consistency: the text is checked to verify the consistency between statements,
models and requirements.

• Completeness: it is checked that all needs are covered by the requirements and
that they are suitably allocated on functions and components.

Those actions are provided by an analyzer, which performs the quality control,
according to the policies defined by the user. It analyzes the text, its structure, the
semantic information, the units and all eventual redundancies. An authoring service
is then activated. It supports the writer in real–time, by checking the vocabulary and
the grammar consistency, but even the completeness of statements. Finally, a
semantic analysis is performed to apply the specific domain vocabulary, by con-
necting the ontologies and suggesting the patterns to be used as a template for
writing.
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4.7 Requirements Refinement and Assessment

The daily practice demonstrates that in complex systems all the above described
activities are never sufficient to give a complete impression of the system to be
manufactured. They are supported by several effective tools, but resorting to some
iterations from the concept stage to validation is always required. Therefore, the list
of requirements composed in a very early concept design is usually helpful to start a
functional analysis, but never coincides with the final, assessed during the product
development. A challenging issue of the Systems Engineering is a direct, digital and
automatic link between requirements, functional and physical analyses. It makes
possible to run a fast process of refinement, which allows assessing the require-
ments, the system configuration and a preliminary validation, as it shall be
described in next sections.

4.7.1 Didactic Test Case: Classification and List
of Requirements

Classification. The mechatronic system consisting of a suspended and controlled
rotor connected to a laying head actually is a quite particular industrial equipment,
even within the steelmaking activity. Few references are found to identify some
typical examples of requirements analysis and classification, respectively.
Moreover, the existing configurations of that machine basically resort to a classic
mechanical construction instead of active supports. Therefore, after a preliminary
interview with the manufacturer, which allows identifying some needs, the system
requirements are tentatively listed by assuming the sources above described as a
reference for writing the SRS. Then, a classification was defined, as detailed in
Table 4.4.

In this case, classes are quite close to those described in Table 4.3. It is worth
noticing that system needs have to be integrated within the rolling mill plant, thus
requiring a deep attention in the design activity to some logistical issues as the
interfaces, the information management, the installation and maintenance as well as
the transportation, which are already distinguished at high level, i.e. in that list.
Physical characteristics actually include constraints and environmental

Table 4.4 Example of classification of requirements applied to the didactic test case

Classes of requirements (Spoiler)

1. Operational Requirements
2. Functional Requirements
3. Performance Requirements
4. Constructional Requirements
5. System modes and states
6. System interfaces

7. Physical characteristics
8. System Safety
9. Information management
10. Installation and maintenance
11. Transportation
12. Cost
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compatibility issues. Design constraints are somehow expressed by the
Constructional requirements. Safety and cost are directly indicated, although in
every project they appear as main issues of design.

Preliminary elicitation of requirements by source. The elicitation of
requirements was performed by resorting first to their source. This approach allows
collecting a preliminary list, which is just slightly larger than the one collecting
customer needs, but already converted into technical and measurable contents, as it
looks in next tables (Figs. 4.11, 4.12, 4.13 and 4.14). Particularly, a first list con-
cerns the needs expressed by the customer during a preliminary interview and by
some additional communications. It looks quite complete, although contents are not
so homogeneous. Some requirements related to the technical domain are then listed.
They are defined directly with the manufacturer as macroscopic exigencies of
fulfillment. Finally, a set of requirements related to the smartness of system are
added. The last could be defined by considering some typical attributes of the
mechatronic systems, as they are described in the literature and summarized in
Fig. 4.10.

In the above figures, several requirements are described. It could be immediately
realized that customer was prone to identify either a quantitative requirement, based
on a numerical reference, or a qualitative requirement, focused on a certain attribute
or action. SR1, SR2, SR6, SR10, SR11 and SR13 for instance (in Fig. 4.11) all
include a numerical target, while SR3, SR4, SR5 and others provide just a state-
ment. Different levels of information are foreseen, but they are not subdivided into
layers in terms of priority or granularity. Some are very general as the SR20
(against the risk of fire), some other ones are quite specific as the SR28 (linear
conversion of energy). A more detailed description is provided by requirements
belonging the list of technical issues. In this case the practice of this domain
suggests some specific issue for the design activity as, for instance, the need of
rotating in supercritical regime the rotor to benefit of the natural self–alignment
(SR102). Smartness requirements are defined by resorting to the list of Fig. 4.14
and applied to the technical context. As it could be easily realized, this template
suggested a number of pertinent and useful items. Identification numbers of re-
quirements in the example reveal that designers included some other statements,
which were then deleted, after a preliminary screening (identification numbers are
not in progressive order). Nevertheless, to avoid any mistake, the listed require-
ments were not numbered again, but they kept their initial identification code.

Listing of requirements by class. In an advanced step of elicitation, it is
preferable resorting to classes to organize the statements collected from different
(here just three) sources. In the example, the applied categories correspond to those
introduced in Table 4.4. However, a lack of a more general category just aimed at
defining the system purpose is found. Therefore, the requirements manager tool
introduced a first generic class for some very high-level statement, to allow a better
distribution of contents. The structure of the document looks like in Fig. 4.15.

As Fig. 4.15 shows, to assess the requirements list is useful applying some
typical rules. Each requirement has to be identified by a suitable code or identifi-
cation number. This code is assigned as soon as the record is open and never
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changed after, thus avoiding that any reordering of the list might cause a mismatch
in allocating and linking the requirements to functions. It is not considered a matter
if the number sequence is never complete nor perfectly ordered, since, indepen-
dently from the value, the correspondence between code and statement must be
unique, whenever the list is accessed by users. This allow linking to this statement,
during the allocation, all the following entities developed. The category or class of
requirement is explicitly declared. All the requirements belonging a certain class are
usually listed together, under the same title. To make the automatic detection of
relevant digital contents easier a marker distinguishes comments and titles from
requirements.

As that organization was applied to the test case, the requirements were listed
like in following tables (Figs. 4.16, 4.17, 4.18, 4.19 and 4.20). They are distributed
within the classes previously defined. To point out two main challenging issues of
the application of the MBSE, in this description two additional objects are shown.
First at all, since it was pointed out that the requirements assessment needs an
iterative approach, in those figures a list of requirements previously divided by
source is replicated by resorting to classes, but some additional ones, in different
color, are inserted. Actually, it should be realized that there is never a perfect
elicitation of requirements, but just either an incomplete or a complete list. Only
after performing the operational and functional analyses, and allocating the re-
quirements, a suitable compromise between a lack of information and a too deep
description of system specification is usually found. In the example, some new
requirements are added just to show the Reader how those analyses could improve
the original list assessed at the beginning of the project. The SRS_27, for instance
highlighted the need of autonomy of the system, being initially poorly stated. The
SRS_302, SRS_303 and SRS_304 define more in details the mechanical and
electrical interfaces, after that the analyses pointed out a problem of grounding the
system and of stably fixing against the risk of short-circuit and of seismic vibration.
Those results will be identified by resorting to the functional analysis described in

Main tle Class tle

Iden fica on
number / code

Verbal
statement

Class

Alloca on

Marker

Fig. 4.15 Structure of the list of requirements (example)
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next chapters, but it can be realized since now that a deeper detailed specification
can be only reached through the process proposed by the Systems Engineering.
Moreover, the physical analysis which shall be developed in next chapters allows
defining components and parts of the system architecture, which are crucial to
perform the allocation of requirements as is herein preliminary described. From this
point of view the Reader can compare the first set of Figs. 4.11, 4.12, 4.13 and 4.14
and the second one, including Figs. 4.16, 4.17, 4.18, 4.19 and 4.20 to perceive, at
least preliminarily, the difference occurring between the initial and the advanced
elicitation of requirements.

If one analyzes in detail the last set, it could be remarked that:

• Designer was prone to use two levels of classification, i.e. a high level corre-
sponding to the three well known categories of Functional, Operational and
Constructional requirements, to have an immediate impression of the main
distribution of the related information, but even a second level of classes dis-
tinguishing statements for safety, performance, cost etc. That approach might be
questionable, but is compatible with the practice of the MBSE.

• As soon as this list was tentatively filled, some classes were poorly described,
thus inducing a deeper elicitation of requirements to add those written in italic.
This was a direct consequence of the classification of requirements.

• Sentences and statements were written as the user directly suggested, but
somewhere the syntax and the vocabulary might be a little bit imprecise or at
least fairly rough, as it shall be herein further discussed.

• A preliminary allocation was attempted, although it was based on a very
schematic architecture for the system, by resorting, for instance, to the concept
of rotor, based on a real rotating part (rotor shaft), a fixed part (stator), a
suspension system to connect those two elements (suspension) and the laying
head as a main component, according to the original idea of the coiling system.

The figures shown in this section were exported from the IBM DOORS®

database. As it will be clearer within the description of the requirements analysis for
the industrial case study, they are organized in several formal modules which help
organizing the structure of the SRS and the classification of the requirements
themselves. An important issue concerns the internal traceability of requirements.
When the SRS is discretized in modules, a great accuracy must be assured during
the design activity in order to define how the requirements contained within the
modules are related to each other. The implementation of dedicated matrices or link
modules is the best way of registering this kind of information directly inside the
requirements tool. Since this step a correlation between the customer needs and the
requirements is looked for. The link modules used to connect the Customer Needs
to the actual requirements specification are usually described by a sort of matrix as
depicted in Fig. 4.21.

In different tools, the above Link Modules are defined by several graphical
forms, but they resort always to a matrix to perform this allocation. Therefore, it
looks fairly easy performing an impact analysis of the involved requirements in
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case of both derivation and change processes. These internal traceability links are
usually poorly exposed outside the specification, but are automatically modified by
the tool in case of updating, i.e. when a requirement changes the related link still
holds, at least until that the requirement is deleted. This approach assures the
consistency inside the specification, but there is an alternate option, which shall be
described in the industrial test case, where the SRS is organized as a federation of
dedicated SRS, being related to each subsystem of an aircraft.

Actually, this preliminary work does not assure that the requirements identified
are complete, consistent and correct. A further investigation is needed and is per-
formed by deploying the functional analysis of the system.

4.7.2 Industrial Test Case: Classification and List
of Requirements

The same activity can be applied to the industrial test case. Some attempts were
required to assess the list of classes of requirements described in Table 4.5,
according to the practice of aeronautical engineering.
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SRS_1 X
SRS_2 X
SRS_3 X
SRS_4 X
SRS_5 X
SRS_6 X
SRS_7
SRS_8
SRS_9

SRS_10 XX
SRS_11 X
SRS_12 XXX
SRS_13 X X
SRS_14 X X
SRS_15 X

….

Fig. 4.21 Link matrix used to connect the Customer Needs to the system requirements
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As in previous example, the selected classes are at least the high-level categories
through which the SRS is written, but they already give an impression about the
structure defined for the product development. Once again, the operational
requirements are aimed at defining mission, goals, scenarios and context as well as
the environment where the system shall operate, while the performance require-
ments describe both the service of the on–board Ice Protection System (IPS), and
include some measurable parameters. Safety and cost play a significant role in this
domain, because of the intrinsic nature of safety critical device. Moreover, as an
on–board equipment, safety and cost greatly affect the integration and the selection
of the commercial components to be applied to build up a redundant system. This
motivation applies even to the specific classes concerning the installation first, then
the maintainability and the testability. Physical requirements define the architecture,
the construction and the packaging issues.

After a preliminary screening, a list of requirements for the industrial test case
could be assessed as proposed in next figures, by resorting to a structure close to the
one described in Fig. 4.15. The requirements elicitation started from the main
system, i.e. the aircraft, then it was developed for all the subsystems.

Some typical issues of the requirements elicitation are clearly pointed out. Since
the derivation of requirements starts from the main system, as the aircraft, the
Technical Standards play a relevant role, when they define a reference scenario of
weather conditions for the system operation, associated to the flight activity. An
evidence of this influence is provided by the SRS_3, where several details about the
flight mission are defined. It includes not only qualitative statements but even a
quantitative information.

A preliminary assumption about the architecture of the aircraft to develop the
IPS is even required, to identify the main functions of the subsystems. It could be
realized by reading the SRS_6 and SRS_7 which define where the protection shall
be applied, for this specific aircraft. It might be noticed that this need is related to
the appearance in the baseline of the product lifecycle development, depicted in
Chap. 3, of several “V–diagrams”, being applied to the main system and to sub-
systems. At this step of the concept design, the main system should be sufficiently
defined to allow a straight deployment of the design for every subsystem. It is worth
noticing that some Non-functional requirements appear in the list. Actually, they
specify physical properties of the system, although they are indirectly defined by
the sizes of the parts of the aircraft where they are applied. This kind of requirement
must be never confused with other ones which are related to a dysfunctional

Table 4.5 Example of classification of requirements applied to the industrial test case

Classes of requirements (Aircraft)

1. Operational Requirements
2. Functional Requirements
3. Performance Requirements
4. Physical Requirements
5. Installation Requirements

6. Safety Requirements
7. Cost Requirements
8. Maintainability and testability Requirements
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behavior of the main system, as, for instance the SRS_4, which considers the event
of a failure of the aircraft engine. The safety and maintainability requirements
include several figures of merit, to be carefully defined and derived from the
technical domain, the industrial practice of the manufacturer and possibly form the
Standards.
The requirements specification for the industrial test case is organized by resorting
to a dedicated project folder of the IBM DOORS®, containing the aforementioned
Formal Module. This is a sort of template, being organized like a written document
and implemented in a table–like format, where rows are the objects (i.e. the
requirements) and the columns are the attributes (i.e. the additional information
associated with each requirement) (Figs. 4.22, 4.23, 4.24 and 4.25).

Objects are classified in two categories:

• Object Heading, which are used to organize the structure of the specification by
introducing chapters, sections and paragraphs; they are never requirements but
they are just used to split the requirements in families and groups.

• Object Text, which are requirements, containing formal specifications, expressed
through a verbal language.

Attributes include different data, like the identifier, some information about the
author, the history (creation, updates etc.…) and every additional data defined by
the user, making this interface extensively customized. The definition of such
attributes is never random. A straight relation between the requirements list and a
suitable view of the system is always looked for. This view consists of the Formal
Module look, i.e. it is based on the displayed attributes. It usually contains:

• ID Code: the identifier of requirement is the unique numerical code which
allows recognizing each requirement during the different steps of design.

• System Requirement: the text containing the specification expressed by each
requirement. A colored bar allows recognizing at a glance the level of its
development.

• Requirement Type: this attribute indicates the family to which the requirement
belongs. It confirms the information provided by the Object Heading, with more
detail.

• Allocation: this column allows expressing a preliminary hypothesis about the
component or part where the requirement shall be allocated during the system
design. This attribute looks a useful tool to drive the development of each
requirement, especially in engineering. Since the final system will have parts
categorized under a standard or a regulation, this attribute allows relating the
Standard issue to the requirement. In aeronautics, the on-board systems and their
components are uniquely identified through the ASD S1000D (former the ATA
100) numbering reference, being used to provide a common platform for the
development of different types of aircraft.

• Marker: this attribute is a pure service input, aimed at identifying whether the
current item corresponds, as an Object, really to a requirement. It is expressed
through a boolean operator “true/false”. This attribute is very important for the
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implementation of the following phases of design, as it will be shown in next
Chapters. It makes easier separating requirements and other objects during the
analysis.

An example of the IBM DOORS® Formal Module with the aforementioned
view is shown in Fig. 4.26.

As the Reader could realize, the above cited organization becomes useful in case
of an industrial product development, where several subsystems have to be inte-
grated. Actually, the requirements written by means of the described structure are
carefully used within the MBSE design process through a straight traceability to
establish a bright link between requirement and model objects. It is known that the
requirements management tools offer many possibilities to implement the internal
traceability among the requirements within the specification (Fig. 4.27).

Some relations can be established among objects of the modules, to specify
dependencies from and to the selected requirements. Those relations can identify
either a derivation or a simple influence that requirements apply each other. They
allow keeping trace of changes and even of the consequences of each modification,
directly within the specification. The IBM DOORS®, for instance, offers an option to
define some specific Link Modules to summarize the topology of these links, directly
within a single matrix view, similar to the example of relation between need and
requirement of Fig. 4.21. Specific linksets are established between the Formal
Modules (or even a single one), to specify from which module the link is generated
and to which one is pointing. Each Link Module can summarize this kind of in-
formation for the different linksets. A sort of map is provided between requirements.

The activity of requirements elicitation is often rather difficult despite of the
simple look of the lists of statements above depicted. Resorting to all of sources
actually relevant for the application, defining the classes to order the list, intro-
ducing a suitable hierarchy of requirements take time and need to be carefully done.
Nevertheless, once that this activity is finished a well driven path to the analysis is
disclosed to the user, who can easily proceed in investigating the operations to be
performed through the system, the functions to be exploited and the most suitable
layout to be built up to fit those requirements and assure the overall integrity of the
system, as is introduced in next chapters.
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Chapter 5
Operational Analysis

Abstract Since this chapter, the different analyses performed by following the
MBSE approach are proposed and deeply described. In the Operational Analysis,
the system mission, context and scenarios are basically studied. The aim of the
chapter is showing first how the Operational Analysis is deployed by resorting to
some SysML diagrams. It is then applied to the so–called didactic test case, by
resorting to a first software tool. It is then applied to the industrial test case, by
exploiting some other tools, to show at least briefly, some differences. At the end of
chapter, the main items of the Operational Analysis are resumed.

5.1 Goals and Tasks

The Operational analysis is meant to determine the system mission, the operational
context and some scenarios, which describe the boundaries of the system activity.

Once that requirements are defined, the context of the system operation and its
boundaries need to be identified. The system is assumed to be like a “black box”.
The operational analysis somehow describes what happens around that black box,
and who acts, and it investigates what are the needs and the intended uses of the
system, in operation. The major aim of this design step is motivating even the
existence of the system under design. A deep understanding of the user needs in
system operation is accomplished, and the system contributes to those needs are
determined. Therefore, within the models developed by the operational analysis, the
environmental context and the associated operational scenarios are derived. This
action includes the identification of actors, defined by INCOSE as “entities that
interact with the system through a function”. The actors even correspond to some
roles played by users or by any other external element, which interacts with the
analyzed system. They receive and provide some services, within the evolving
environment, depending on the context.

The contexts and the use cases help the systems engineer to check whether the
product life–cycle development is comprehensive, complete and consistent.
Moreover, some different behaviors and events, potentially produced by the

© Springer International Publishing AG 2018
E. Brusa et al., Systems Engineering and Its Application to Industrial
Product Development, Studies in Systems, Decision and Control 134,
https://doi.org/10.1007/978-3-319-71837-8_5

115



www.manaraa.com

environment, are investigated. New contexts, actors, and use cases may be added
and need to be considered. Therefore, the system must be either compliant or
reactive to the environment evolution. Particularly, system architects must decide
and predict what the system will be liable to.

This architecture might seem a little bit vanishing, if a deeper and structured
definition is never added, but it is provided by the literature and by handbooks. The
environment is restricted to a set of various contexts, being made of actors inter-
acting with the system and playing a specific role. Performing the operational
analysis means depicting what are the contexts of the environment, which actors are
active in each one, and what is their role.

To implement that investigation, a context vision is provided. It focuses on the
environment of the studied system, being often referred to as “System of Interest”
(SOI), on the operational contexts, and on the relevant actors. It is crucial defining
the information exchanged between the system and its environment, to characterize
the use cases, where system, actors, information exchanged and functions are
clearly stated. Furthermore, the system developer should circumstantiate the op-
erational data model that specifies the physical structure of the exchanged infor-
mation, and the operational requirements related to the operational model elements
(use cases, information, contexts).

5.2 The Operational Analysis Deployed Through
the SysML

Some diagrams can help the system engineer to analyze the context, during the
Operational Analysis, as the System Context Diagram (SCD), the Use Case
Diagram (UCD) and the Sequence Diagram (SD).

The System Context Diagram can be described in the SysML language through a
Block Definition Diagram (BDD) or a UCD. It describes the external entities
interacting with the system, there shown as a black–box. Since it provides a
high-level view of the system, usually it is the first diagram defined. It is able to
depict the environment of the system, the external elements or the actors to be taken
into account, during the development of system requirements. Figure 5.1 shows a
SCD described, for instance, by a UCD.

The relations between the system and the external entities are even better
described by a Use Case Diagram, which defines the use cases that the system is
going to perform, specifying its operational context. In Fig. 5.2 an overview of the
UCD syntax is proposed.

The use cases are the functionalities of the modeled system and its goals. They
are represented as an oval, with the name of the use case written inside, and are
associated to some users, who are shown as some stick figures, with a label. The
users of the system are described as actors and play a specific role in the system
operation. They interact directly with the system or through another actor.
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Moreover, the boundary of the system can be graphically represented to highlight
that the depicted actors are external users and/or systems.

Besides actors and use cases, an important element is the relationship between
them. Four types of Use Case relationships are described in the SysML language:

• “Association” between actor and use case.
• “Refine”, “Include”, and “Extend” between two use cases.

The association corresponds to a simple line, drawn between an actor and one,
or more, use case. It states that the actor performs the linked use case.

A relation between use cases is described by arrows. A secondary use case can
refine the main one, connected to an actor, by adding some properties or

Fig. 5.2 Elements of a typical Use Case Diagram (UCD)

Fig. 5.1 Elements of a typical System Context Diagram (SCD)
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functionalities. It might extend a use case functionality, with some exceptional
behavior. The use case can include another one, if this performs a sub–function.

The Sequence Diagram is a time dependent representation of the data exchange,
in terms of messages, among the entities of a use case. It is a very common
representation, for the identification of interfaces between system and environment,
during both the operational and functional analysis, respectively. Its implementation
is oriented to input/output relations, based on request/answer structure, and it can be
used also to translate the contents of the Activity Diagrams (Chap. 6) into a time
dependent sequence of operations (hence the name). This is an interesting way to
represent the flow of actions and operations, through many scenarios, to be further
analyzed in terms of messages exchanged among the use case entities. Since each
Sequence Diagram can be considered a description of a specific flow, the whole set
of diagrams may represent the different situations in which the system shall operate.
The lifelines in the SD (Fig. 5.3) allow describing the actors’ interfaces and the
actions performed, as a sequence of messages among the roles involved in the use
case. In the meanwhile, the communication among different use cases can be
described as well, if the cross–relations between objectives expressed by the actors
(i.e. the use cases) are shown.

Fig. 5.3 Elements of a typical Sequence Diagram
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Some tools use the Sequence Diagrams to formalize the operations defined in the
Use Case and Activity Diagrams, to create a sort of database, to be exploited during
the process. An example of SD is shown in Fig. 5.3. Two instances belong the same
scenario. The Instance n.1 sends a message to the Instance n.2, that executes an
operation and gives a feedback. Eventually, an optional set of operations can be
selected, if the condition shown into the box is verified. At the end of the diagram, a
reference to another SD is used to execute a predetermined set of operations. This is
very often deployed to re–use the elements already defined or to enhance the
integration within the diagrams.

The Sequence Diagram can be enriched with several SysML elements. It can
represent various entities, exchanging messages and operations. Somehow it looks
the most flexible diagram of the whole set of diagrams herein presented. It is helpful
in characterizing the white box architecture of the system, which describes subse-
quent phases, by replacing the use cases with blocks representing the system’s
parts.

5.3 Implementation and Operational Context

The main contents of the Operational Analysis are now described by resorting to the
test cases introduced in previous Chapter. The laying head system will be analyzed
through the PTC Integrity Modeler®, while the IPS will be described through the
IBM Rational Rhapsody®. The approach applied in both the test cases is quite
similar, despite of some features of the software tools. The aim of this section is
deploying the Operational Analysis tasks, and focusing some contents of the
SysML diagrams. The requirements traceability is assured in both the examples by
connecting the models to the database, where requirements are stored and managed
by the IBM Rational DOORS®.

5.3.1 Didactic Test Case

In a material processing domain, no strict rules are followed during the operational
analysis, because of the peculiarity of the analyzed system. Particularly, within the
operational context of a smart steelmaking plant, the definition of system bound-
aries and of actors is never simple. Many actors interact with the system continu-
ously, even without a trigger command or request. This situation unfits the formal
definition of actor previously proposed, as an entity with a legitimate interest in the
system, interacting through a function. From this point of view, it might be
immediately realized that a straight application of the SE to the industrial product
development needs to be conformed to the exigencies of a technical domain slightly
different from those where this methodology was originally developed and
assessed.
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The above mentioned difficulty suggests to identify first the system boundaries,
and all the actors interacting with the system. A Context Diagram is therefore drawn
for the test case, as in Fig. 5.4.

The object of this analysis is the laying head system, that is making the wire rod
spinning, and is as subsystem of the steelmaking plant. The operational analysis
starts by identifying the actors of this system:

• The operator—person who operates the steelmaking process.
• The coiler—devices storing the coils of wire rod and building up the package;
• The monitoring and emergency system—central control unit which stops the

laying head, in case of emergency, and behaves as an adaptive and actively
controlled system.

• The rod—it is simultaneously a passive and active subject, which is shaped by
the system, but affects its dynamics through the contact and the distribution of
inertia while passing through the holed shaft.

• The plant platform—it is the floor required to bear the system, and to provide a
reference for the electric grounding; it might be even a source of noise and
seismic vibration.

• The powerline—it is a connected system, required to feed energy; it might be a
source of irregular behavior in dynamics if the power feeding suffers some
phenomenon like the flicker.

Fig. 5.4 The Context Diagram of the didactic test case
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Starting from the different roles played by the actors during the system opera-
tion, a first set of use cases has been identified. Since the manufacturer intends to
develop a mechatronic system, that shapes the steel rod as a coil and stores it, many
customer needs assessed during the Requirements Analysis are related to the rod
suspension and rotation, as well as to its shaping. Thus, in addition to the obvious
services, like “Start” and “Stop the process”, the system shall also suspend, rotate,
shape and deliver the steel rod.

The three tasks related to the rod, plus the delivery, should be considered
uncoupled, but, since they can be performed in sequence, the complexity of the
system architecture can be reduced. For this reason, this test case considers the
coupled use cases “Suspended and rotated” and “Shaped and delivered”.

In Fig. 5.5, the main missions of the system derived from the collected customer
needs are depicted. It can be noticed that not all the actors have been considered
since the beginning. According to the definition of use case, the bubbles should
represent how the actors actively interact with the system, but, in this case, some
passive or shadow actors are considered as well. It means that they are never
directly asked to perform a function, but the system simply involves them in its
behavior, by exploiting their interaction.

The object of study in this case is a mechatronic system, therefore further details
of the Operational Analysis deal with this specificity. According to the
Requirements Analysis, more use cases need to be represented in this Use Case
Diagram, including the power supply and the calibration of the system, as well as
the ground supporting the Laying Head.

Fig. 5.5 First Use Case Diagram of the didactic use case
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The diagram may be refined including all the actors and reformulating the use
cases, as depicted in Fig. 5.6. The use cases of the laying head system can be
summarized as follows:

• The powerline provides the power supply to the system.
• The operator wants to start the process in operation.
• The operator wants to stop the process in operation.
• The operator wants to maintain, test and calibrate the laying head system.
• The monitoring and emergency system wants to stop the process in case of

emergency.
• The wire rod requires suspension and rotation.

Fig. 5.6 The final Use Case diagram of the didactic test case
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• The wire rod requires shaping and delivery.
• The coiler is necessary for shaping and delivery.
• The plant platform provides the mechanical and electrical grounding.

This description motivates completely the role of stakeholders, although some
actions are never required explicitly, but continuously and somehow implicitly.
Some additional remarks need to be considered. The operator and emergency
system have simultaneously access to the use case “stop the system”, thus a level of
priority, in case of emergency must be associated to each actor and defined during
the system modeling activity, i.e. within the functional analysis. Moreover, the
powerline and the plant platform provide support to the system without any query,
but their activity must be considered in case of dysfunction of the system.

Differently from the industrial test case, here only the basic notation of the
SysML language has been used, since this represents the first approach to SE for the
manufacturer. Today the majority of SysML tools offer a wide variety of diagram
elements to model a system, but this example demonstrates that few elements are
really sufficient to provide a nice overview of the system to the user. However,
some optional elements may improve the description and avoid any potential
misunderstanding. For instance, in Fig. 5.7 the connection between use cases and
requirements is better described if the related association is displayed as <<re-
fine>>, in the requirement diagram.

The refine relationship, described in Table 5.1, allows specifying the use case
not only to define the system mission, but also to refine further a requirement.

This step is important to assure the requirements’ traceability and their consis-
tency, during the entire modeling process. Tracing the requirements with the use
cases can ensure that no one is missed and all requirements listed are fulfilled or, at
least, are allocated.

The Use Case Diagrams define the environment of the system. They indicate the
entities interacting with it, i.e. humans and external systems, but also describe how
the actors use the system. This usage can be further detailed by the Sequence
Diagrams. It represents the flow of information between the system and the actors,
in a temporal sequence of events.

It is usually recommended to represent the system as a black-box on the right
side, while the actors that interact with the system are kept on the left side. The
Sequence Diagrams for this test case have been used to describe every use case
defined in Fig. 5.6. This activity defines the information exchanged between the
system and its environment to specify the system context.

Some sequence diagrams are herein depicted as an example, for the use cases
“Start the process”, “Stop the process”, and “Require suspension and rotation”.

The sequence diagram for the use case “Start the process” is shown in Fig. 5.8.
This use case is connected only to the operator, being interfaced with the system to
enable starting the steelmaking process. It is stated that the operator must send to
the Laying Head System a startup signal to process the wire rod of steel. As soon as
the Laying Head receives that information, it sends back a signal to inform the
operator that the system is ready to start. Then, the operator may agree to start the
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process and sends the consent to the Laying Head. The sequence is very simple,
since it represents just the interactions between system and only one external entity.

The diagram becomes more complex, when many actors are involved as in
Fig. 5.9, for the use case “Stop the process”. Here, a peculiarity is that either the
operator or the monitoring and emergency system can stop the process. The
Sequence Diagram exploits the alternate operator (Alt ()) to describe this scenario.

Table 5.1 Requirements Diagram, Types of dependency

Type of
dependency

Meaning

Refine The refine relationship describes how a model element (or set of elements)
can be used to later refine a requirement. For example, how a Use Case can
represent a Requirement in a SysML Requirements Diagram

Fig. 5.7 Excerpt of the correlation diagram between use cases and customer needs
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The request to stop the process can be triggered either (alt) by the operator, which
asks the Laying Head to stop the process, once that a certain length of the wire rod
is manufactured, or (else alt) by the monitoring and emergency system, which
requests to stop the process, in case of emergency related to a dangerous condition.
When the Laying Head receives either of those signals, the process is stopped and a
warning is sent to the operator.

The Sequence Diagram can include as many alternative actions as needed by the
use case, using the Alt notation. The end of the set of alternatives is marked with the
Type end alt.

In Fig. 5.10, another example is proposed. The use case “Require suspension
and rotation” is described. The wire rod is suspended and rotated by the Laying
Head and a safe levitation of the rotor is activated, only if it is monitored by the
monitoring and emergency system. Thus, first the monitoring and emergency
system requests to check the status of the rotor and the Laying Head gives back the
required information. Only when the rotor is active and stable, the steel rod can be
inserted. The rod requires to be detected by the Laying Head, that sends these

Fig. 5.8 Sequence Diagram for the use case “Start the process”

Fig. 5.9 Sequence Diagram for the use case “Stop the process”
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information to the monitoring and emergency system. Once the rod is detected, the
Laying Head warns the active control and the plant platform and converts the
translational motion of the wire rod into a circular one, thus building the coil. In the
last sequence, the system sends some messages simultaneously to the three actors
involved.

5.3.2 Industrial Test Case

The aeronautical on-board equipment are a typical example of highly integrated
system, where the operational context is characterized by a high level of complexity
and a considerable number of interfaces with the actors, as it happens for the Ice
Protection System (IPS) described in this section.

The complexity of the System of Interest sometimes induces the system
developer to preliminarily define some main functions without considering the role
of the operational context. This leads to forget or at least neglect some high-level
requirements, defined in previous phase. This is a typical mistake, and might affect
the effective integration of the Operational and Functional analyses, at the begin-
ning of the modelling activity, although it is one of the most critical steps.
Moreover, an even worst mistake consists in referring to an architecture already
available on the market to develop the new system, instead of resorting to a level of
abstraction, which should allow uncoupling the new concept and the technology
currently used in known products.

This approach strongly affects the operational context, and often leads to identify
a completely wrong scenario, in most of cases, because of some wrong use cases or
actors, or some unsuitable relationships defined among them. To avoid this prob-
lem, it is extremely important proceeding by following a precise sequence of
activities, i.e. starting from the requirements coming from the elicitation performed
on the stakeholder needs, by paying attention to the level of specification at which
each one was written. As an example, in the test case currently analyzed, among the
Operational requirements, five statements can be identified:

Fig. 5.10 Sequence Diagram for the use case “Require suspension and rotation”
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• The IPS shall permit the aircraft operation, without restriction in icing condition
specified by regulation.

• The IPS shall be operated under all flight phase, from take-off to landing, when
the ice protection is required and considering the temperature envelope, to
which the aircraft is exposed.

• The airframe IPS shall be operated under all flight phases, from take-off to
landing, when ice protection is required and considering the aircraft
performance.

• The IPS shall permit the aircraft operation, without restriction in icing condition,
within the One Engine Inoperative (OEI) scenario.

• The IPS shall be conceived to support different modes of operation and to adapt
to the severity of ice accretion.

Looking at those requirements, some remarks can be added. First, the system
shall operate in a specific mission, since it is associated to the aircraft and the
temperature and performance envelopes assumed as an input for the analysis. Some
specific conditions are even foreseen, like the OEI emergency, defined by regula-
tion, as the most of environmental details. Moreover, it can be clearly understood
that somebody shall operate the system, using some power source. The system shall
be also managed, in different ways, depending on the severity of icing conditions.
This requires that some air data shall be required to perform the control action. It
shall be then possible to identify the ice accretion and to proceed with the ice
removal. Practically speaking, the following actors are identified:

• Pilot (or crew)—the person in charge of operating the system.
• Power source (or power system)—the device feeding the system. It is relevant

appreciating that at present it is not yet defined what kind of energy or power
could be selected.

• Air Data System (ADS)—is located on the aircraft, it is the subsystem which
provides information about airspeed, altitude, air temperature, pressure, through
some sensors and pitot-static ports.

• Environment—it reflects all the environmental conditions affecting the flight.
• Flight Management System (FMS)—is located on the aircraft, it is the system

responsible for the flight management and navigation (route management,
mission profile etc.…) typically collecting information from some other avionic
equipment.

The identification of the actors above mentioned allows defining the Use Cases.
It looks now easier, as the actors exploit some interfaces with the System of
Interest:

• The pilot wants to predict the ice accretion on some selected surfaces of the
aircraft.

• The pilot wants to detect the ice accretion on some selected surfaces of the
aircraft.
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• The pilot wants to remove the ice accumulated on the selected surfaces of the
aircraft.

• The ADS provides the suitable information to predict the ice accretion on the
selected surfaces of the aircraft.

• The ADS provides the suitable information to detect the ice accretion on the
selected surfaces of the aircraft.

• The power source is necessary to predict the ice accretion on the selected
surfaces of the aircraft.

• The power source is necessary to detect the ice accretion on the selected sur-
faces of the aircraft.

• The power source is necessary to remove the ice accumulated on the selected
surfaces of the aircraft.

• The Environment shall be considered (is associated) to predict the ice accretion
on the selected surfaces of the aircraft.

• The Environment shall be considered (is associated) to detect the ice presence
on the selected surfaces of the aircraft.

• The Environment shall be considered (is associated) to remove the ice accu-
mulated on the selected surfaces of the aircraft.

• The Flight Management System shall be considered (is associated) to predict
ice accretion on the selected surfaces of the aircraft.

• The Flight Management System shall be considered (is associated) to detect ice
presence on the selected surfaces of the aircraft.

The operational context can be summarized and implemented by means of the
SysML language and specifically through the Use Case Diagram (UCD), looking in
the IBM Rhapsody® like in Fig. 5.11.

As Fig. 5.11 shows, the Use Cases are connected to the actors through associ-
ations, whose meaning is specified by a label. It might be remarked that the relation
between linked objects is generically described as an association, without additional
details, but the link introduced will be recorded within the element properties, in the
model, and it shall assure the complete traceability along the product development.
The Use Cases are included within the so-called System Boundary Box, which
identifies the boundaries between the system and all the external entities. It can be
appreciated that the type of relation defined between actors and system affects all
the following phases of the analysis. It drives even the trade-off of the system
architecture, especially at interfaces.

The importance of this remark is due to the different kind of actors identified:

• Actors having a primary interaction with the system. In this case it is typically
an on-demand relation, i.e. the system reaction is exclusively a consequence of
some specific and unique requests of the actors. Each actor acts as a trigger for
the system, whose response depends on the received input. This is the typical
interaction between the aircraft pilot and the IPS.

• Actors having a secondary priority interaction with the system. They might be
required for a proper operational behavior (i.e. the absence of the connection
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may imply the inability to reach the objective), but they usually provide a
continuous interfacing, without needing for a specific trigger. Those actors start
providing some services or data to the system always under the control of
primary actors, but, once the connection is established, they proceed without any
further input. Sometimes, this kind of interaction is associated to the shadow
actors or stakeholders, as they were already defined in Chap. 4. In the example
of the IPS, the Electrical Power Systems as well as Air Data System typically
behave like it was above described.

• Actors whose existence is never depending on the system. They are typically
related to environmental conditions. They have no specific interest or objective,
although their influence on the system behavior and performance might be
relevant. For the IPS, the weather is the villain actor causing the problem of ice
accretion, to be solved by the system. It cannot be classified as either a primary
neither a secondary actor, although it provides the inputs to the system, to
behave correctly.

There are many actors who can be defined in the Operational Analysis and
particularly within the UCD. The analysis is mainly focused on primary actors,
since they have the strongest impact on the system behavior, although even other
actors are fundamental to define the whole set of system interfaces. Therefore, all
the actors are included in the use case analysis, while some ones disappear in the
subsequent diagrams.

In the industrial practice, an interesting detail to be considered concerns the so–
called “pre” and “post” conditions described within the use cases. They identify,

Fig. 5.11 The UCD of the industrial test case
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respectively, the necessary conditions to start a use case and perform its activities,
and the conditions reached after that the use case is completely deployed. The so–
called pre-conditions sometimes involve some secondary or shadow actors. To be
able to reach the defined target, for instance, the system must be connected to a
power source, which looks like a “conditio sine qua non” to proceed. In some case
resorting to pre-conditions simplifies the UCD, because the exchange of power, for
instance, between actors is neglected, but it may be misleading, because
pre-conditions are not linked to the properties of the use case, in some MBSE
software tool and this might lead to a loss of traceability. This is due to the entity
responsible to provide the power source, for example, being contained within the
definition of the use case, instead of being a model object itself. Defining explicitly
the whole set of actors within the Operational Analysis is usually suggested to
assure the traceability of some critical models, although the use of pre-conditions
and post-conditions is quite popular, when suitable supported by the software tool.

The UCD is very effective to summarize the operational context, since it is
intuitive and self–explained by the SysML semantics. However, this is a simple
example of UCD, just shown to describe the main steps of the implementation.
The UCD, in fact, are even more complex and many elements may populate the
diagram. Therefore, it is interesting to investigate the level of details to be kept into
a UCD.

Let’s consider the third Use Case above depicted. It might be further detailed, to
derive even smaller Use Cases included. Figure 5.12 shows a more detailed view of
the diagram, although the environment and the FMS are neglected to make easier
the perception. Apart from the ice removal, which will be analyzed later on, some
objectives of the pilot (or a generic operator) are related to the control and

Fig. 5.12 Detailed UCD for the industrial test case
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monitoring of the IPS. Two Use Cases are then created and linked to the father Use
Case, through the include dependency. The dashed arrows suggest that the new Use
Cases are part of the main one, but they can be analyzed separately, to reduce the
complexity of the analysis, related to their realization. The main properties of the
father Use Cases will be inherited by the sons. The association with the actors is
neglected, in this case.

The example immediately brings to the dependencies used in the Operational
analysis. These are “soft links”, i.e. they specify a weak relation among elements, to
be easily modified and updated during the project. Some types of dependency that
can be instantiated are shown in Table 5.2.

The Refine links can also be used, as in the didactic test case (Table 5.1). Since
the Operational analysis is located at the beginning of the project, the flexibility of
links is fundamental. It is almost sure that the context will be updated several times.
The Use Cases are the starting input for the following analyses, therefore they
undergo a careful review process, to be well assessed and guarantee a good ref-
erence for the next steps of the product development. To perform that assessment
several behavioral diagrams have to be compared each other. Particularly, the
Operational Analysis here proposed uses the Sequence Diagrams (SD) to provide a
more detailed description of the high-level operations performed in different sce-
narios and involving the system actors. This is a representation, in formal language,
of the contents already depicted in the UCD, but it focuses on the specific
exchanges among actors and use cases, simply described in the UCD by some
associations. An interaction between actors and use cases, as shown in the SD, may
occur only when they are connected by an association in the UCD. This corre-
spondence allows organizing the analysis. It is an effective real-time verification of
the completeness of the instantiation of each high-level relationship. This approach
makes expedient understanding whether any association link is missing in the UCD,
or any relation is unused.

The SD assumes different meanings along the MBSE design process. It is widely
used, because of its simplicity and flexibility. Typically, the Sequence Diagrams are

Table 5.2 Types of dependencies

Type of
dependency

Meaning

Include This dependency states that the source use case contains the objective
specified by the target use case, which express a detailed item, within the
boundaries of the source. It distinguishes a lower level use case, whose
properties are similar to those of the father use case

Extend The extension specifies a use case that identifies an objective being
originally out of the boundaries of the target use case. Therefore the source
use case is a special condition, not included within the scope of the target
use case

Trace The trace is a general-purpose dependency to instantiate a connection
between use cases. The target somehow depends on the source, but this
relation is not yet specifically defined
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defined considering the use case in the Functional Analysis, but within the
Operational Analysis they are exploited to represent one or more specific scenario.
In several examples use cases and scenarios are used as a synonym, somehow
meaning that the use case may include already a considerable number of implica-
tions on the system behavior. According to this interpretation, the use case assumes
a larger dimension, because it may represent a complete operational phase. In fact,
this is never assumed to be the best modelling approach, because it imposes a
system–centered point of view to the operational analysis. In fact, it should be used
to investigate the interactions between system and actors.

The so-called scenario is then a sequence of operations and events describing
the mutual relationships among the actors and the system, when pursuing a defined
objective, which is specified by the use case. The scenario includes different use
cases, especially when some dependencies are instantiated among them, as it was
previously shown. In practice, the scenario is a wider instance, compared to the use
case. The scenario is the formal description of a context, with a sequence of op-
erations and events necessary to reach one or more actors’ objectives, being
specified by the use case. Some examples are proposed in following diagrams,
dealing with the formal description of scenarios, for the IPS.

In Fig. 5.13 the ice forecast scenario is shown.
Some vertical instances populate the scenario depicted. The actors, represented

by a thicker vertical line, are placed at the boundaries of the diagram, to point out
that they are external entities. Three use cases are included as dashed vertical lines
or instance lines. In the diagram, the time is increasing downwards and the oper-
ations and events occur along a sequence, at some specific instants, identified by

Fig. 5.13 The Sequence Diagram for the Ice Forecast scenario
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horizontal arrows or lines. Some areas of the diagram can be subjected to a specific
condition and the so-called interaction operators identify the rules applied to make
the operations executed. The amount of time necessary to receive, elaborate and
react to an incoming message is represented by a vertical rectangle, defining the
extension of occurrence.

In this example, to describe a complete ice forecast scenario, the objectives
related to the ice monitoring and removal process, the prediction of ice accretion
and the detection of ice presence must be reached. The completion of those
objectives requires that some operations are performed to actuate the whole
sequence of activities. The actors must be involved in this process. Looking at the
semantics, it is possible detecting a flow of interactions from the ADS to the pilot,
who is able to read the air data and forecast the needed information, as soon as the
ADS provides a prediction of ice accretion. The whole set of operations is active,
when the mission is ongoing, the status is nominal and the supposed IPS is either in
standby or in active mode. Looking at the execution occurrences (i.e. the white
rectangles located on the instance lines to indicate the scope and the time required
to perform an operation), it is possible to realize that some operations are performed
in parallel. Some of those, as the computation of the forecast, require a longer time
to be accomplished.

This example points out many issues of the modeling process.

• The scenario involves three use cases and two actors. They are connected
consistently with the associations specified within the UCD, although not all the
links are instantiated.

• The scenario is based on a mechanism of request and answer. All the elements
use some information collected from others, to provide a tangible effect. Only
the first operation, provided by the ADS, is a trigger to start the operations of
this scenario.

• The scenario is referring to a nominal behavior. In aeronautical domain, this is
usually referred as “sunny day” scenario, in comparison with the “rainy day”
scenario, which is mainly related to failures, or non-conventional scenario. The
terms “sunny” and “rainy” indicate a more probable and a rarer scenario,
respectively, not only and strictly the weather conditions.

• Some preliminary hypotheses are formulated about the system modes. This is a
typical feature of the operational analysis, since the assumptions are made by
looking at the operational requirements already available. If these hypotheses
are considered valuable, some new operational requirements can be added to the
specifications, through a direct derivation from the diagrams.

This test case is suitable to add some remarks about the implementation.
Operations and events are elements of the MBSE design and are stored within the
model tree, as soon as they are defined. They are accessible and usable in following
phases, since this step. For this reason, several tools use some specific strategies to
save these data within the model, to assure their traceability. In the test case,
operations are saved within the scope of the instance, which receives the data. For
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instance, the operation “Send air data” is collected within the scope of the use case
dedicated to prediction, instead within the actors’ properties, although an evidence
of the link between those two elements is saved within the properties of both
instances. This structure is motivated by the fact that there is always a receiver,
while some elements may not be responsible for sending data (as the pilot here).
The operations internal to a specific instance line (looking as a closed-loop arrow)
are stored within the element related to the instance line itself. These operations are
foreseen, when an internal process is required to provide an output, starting from a
received input. The operations are defined for the first time in the SD. A realization
process can be even included, to allow a selection of the objects to be kept in the
model and to avoid considering those to be erased. This motivates the relevance of
the SD. It is used as a further verification mean for the confirmation of the con-
sistency and correctness of the defined operations.

The Interaction operators are used to segregate the information and to introduce
some rules to better describe the sequence. In this test case, all the conditions
concerning mission, status and modes exploit a loop control to allow the execution
of operations. Particularly, if the rule is valid, the sequence will be performed
within a loop. Other types of interaction operators are available in the SD. Several
ones will be used in following examples. Therefore, a list is proposed in Table 5.3.

Other scenarios help in understanding these topics and the difference between
operation, event and message. In Fig. 5.14 the SD for the Ice Detection scenario is
shown. Three use cases and one actor are included. Interaction operators are
equivalent to previous examples, but some details are added. The flow of operations
is deployed from the measurement of the ice thickness to displaying the ice
accretion level to pilot. This sub-sequence is provided by a dedicated interaction
operator, which can distinguish three levels of ice (high, low and minimal).

Table 5.3 Types of interaction operators

Type of interaction
operator

Meaning

Opt Optional interaction operator. It identifies a set of operations to be
executed, under some specific condition, being unique and uncoupled
with other ones. If the condition is not verified, i.e. the set of operations
is not executed within the SD, no alternative solution holds and the
sequence of operations skips to the main flow

Alt Alternative operator. Meaning is close to that of the optional
interaction, but an “else” condition is foreseen. An alternative solution
can be activated. A dual condition including a dedicated sequence of
operations is provided (as for true-false conditions)

Loop Loop operator is used to keep the sequence of operations flowing in
circle, if the condition is always verified. The flow is then stuck in
loop, as the name suggests, until that the condition “false” is met

Parallel Parallel operator is used to specify some branches of the SD, to be
executed in parallel. No condition is required
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Figures 5.15 and 5.16 show the SDs for the Ice Removal scenario, being the
main use case. Two SDs are drawn to facilitate the modeling process. A new model
object referred to as interaction occurrence is included. This “black box” simply
contains a reference to another SD, to be used to decompose the complexity of the
representation. Instead of a unique diagram, quite complicated, this approach allows
encapsulating a part of the scenario, to be also re-used in different contexts, which is
analyzed separately. The part is identified by a box, including the name of the
diagram to which it refers and a small Ref label in the upper left corner.

As Fig. 5.15 shows, in the first part of the scenario, the operations populate the
sequence used to describe the effects expected in presence and in absence of ice, i.e.
how the hypothesized “on” and “standby” modes are implemented. The second part
deals with the sequence of system actuation. An interesting issue, at this point,

Fig. 5.14 The SD for the Ice Detection scenario
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Fig. 5.15 The SD for the Ice Removal scenario (Part 1)
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Fig. 5.16 The SD for the Ice Removal scenario (Part 2)
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concerns the different functionalities of de-icing and anti-icing, to be clearly dis-
tinguished by means of some derived requirements.

The two SDs shown in Figs. 5.15 and 5.16 are surely fuller than the others
previously sketched, because of the interactions and the number of operations.
However, the minimum set of data required is there introduced. A goal, when using
the SDs for the Operational Analysis, is keeping the model as simple as possible,
provided that all important information are considered. The level of complexity of
the scenario consequently increases with the number of involved use cases, and the
amount of information they contain, but the overall set of interaction shall be kept at
a level which might look as sketch of process. Nevertheless, it shall be better
characterized through the following phases, just starting from this high-level con-
cept. In Fig. 5.15, for instance, the number of operations and interactions will be
surely higher than the unique one described, but the sequence represents the main
core of process to be detailed later on. A specific structure for the interactions is
used, when a request is sent by an actor. The Request-Confirm-Display chain is
applied, as in most of systems where a user interface is required. Despite the
simplicity, it corresponds to the core sequence actions to be described at this level
of analysis. This is the typical relation between a primary actor and the System of
Interest. Particularly, when the ice presence is confirmed and the pilot wants to
activate the IPS, the sequence really operated looks as follows.

• The pilot wants to control the ice removal process and requests to switch ON
deicing.

• In the nominal scenario, the system will confirm ON deicing, after a certain time.
• Since the pilot wants also to monitor the ice removal process, the system shall

show ON deicing, by display.

In that sequence, the difference between the operations aimed to confirm the inputs
and the real outputs is crucial, because they are both provided by the system, to
reach the actor objectives. The confirmation consists in receiving and accepting the
input, and requires some time and a least minimum computational effort to be
executed. By converse, the operation of displaying the output is the result of
computation. It identifies the execution of a command (show), and provides a real
time information about the status of system operation. Similarly, in our daily
experience we see that, on the elevator, the push-buttons of the consolle are illu-
minated to confirm the input, and display the current floor, to show the real output.
This detail can be appreciated in Fig. 5.16, where the ice removal process is exe-
cuted. Two confirmations are present to connect different use cases, being objec-
tives from the point of view of each actor, because more entities are involved. This
is a slight evolution of the RCD chain, in case of systems with higher level of
complexity.

Extremely relevant is the correctness of the sequence of operations. The SDs
must contain only sequences, which can be assumed as feasible and coherent with
the domain application. It is highly probable that the sequence will be refined and
the final system will have a different sequence of operations, in its final release, but
the completeness and correctness of each one introduced in the development are
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essential. In Fig. 5.16, for instance, when the activation command is set at “ON”,
the different zones are activated in sequence. They are deactivated only when the
“OFF” command is provided. The activation loop may change, during the design
process, to fit some requirements associated to both the functional and dysfunc-
tional behavior, but, at this level, a general draft for the activation sequence is
acceptable, to define the most important operations involved.

A crucial point concerns the use of SDs in the Operational Analysis of the
concept of segregation. This approach allows managing and organizing the relevant
information in some dedicated contexts, to involve only the entities primarily
related to the process. In the Operational Analysis, this means creating some simple
scenarios, to be eventually related to each other through references or interaction
occurrences, being focused on some specific parts of the overall sequence, and
involving a small set of actors and use cases. This motivates the separation of the
ice control and removal processes, in Figs. 5.15 and 5.16. It is true that a typical
feeling of users about this approach is that something important in the sequence
could be missed or forgotten, but this risk is mitigated by the MBSE techniques. All
the information are stored in databases accessible from any point of the model and
highly traced. This approach provides a sort of map, that can be useful to check
whether the set of data contained within the diagrams is coherent and complete.
Moreover, the Operational Analysis, which is considered as a sort of sketch for any
future improvement, is itself characterized by some uncertainty. Rather than con-
sidering big scenarios, whose completeness is realized by full-scale processes, it is
better to rely on a completeness of smaller scenarios, to be reached through the
capabilities of the MBSE tools applied to traceability of data.

5.4 Requirements Derivation in Operational Analysis

The requirements derivation process starts from the definition of high-level
requirements, coming directly from customer needs, and goes through the different
design phases. During each step, the requirements specification is updated and new
relations are established between requirements and model objects. The best way to
proceed, when deriving requirements directly from the model-based implementa-
tion, is to rely on the capabilities of SysML diagrams and semantics, together with
the possibility of managing directly the connection between the MBSE design tools
and the requirements database. In fact, although the high level requirements
specification is used as a starting point for the Operational Analysis, the require-
ments derivation is notably a backward process, since it allows defining require-
ments directly within the SysML diagrams, and assures a consistent
synchronization of information with the database. The requirements are first defined
within the MBSE tool, and not within the specification, as in the beginning,
although their reference remains the database, where the new requirements are
recorded and classified. In the Operational Analysis is then possible to conceive
three different steps for the requirements management.
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• Connection between high level requirements and use cases (from the specifi-
cation to the model).

• Derivation of new requirements, from the SysML diagrams.
• Updating of the requirements specification (from the model to the database).

The first step is typically faced through the instantiations of proper trace
dependencies among requirements and use cases. This allows addressing the
requirements onto specific areas of the design and directly connects the objectives
represented by the use cases with the high-level specification. When instantiating
the relations among requirements and other model objects, several SysML diagrams
can be used. However, due to its specificity and to the available properties, the
Requirements Diagram (RD) is one of the best platforms where these data are
collected. As Fig. 5.17 shows, an instantiation of dependencies among require-
ments and use cases is performed, for instance in the industrial test case.

The direction of links indicates which element is dependent or independent. The
architecture shown in Fig. 5.17 leads the requirements depending on the use cases.
Therefore, they can be refined and derived in following phases of the analysis.
When dealing with the operational and functional issues, it looks a good idea
indicating the direction of dependencies, since this property suggests a subsequent
detailed process. This approach basically agrees with the descending path described
in the V-diagram. As soon as the logical analysis is concerned, a sort of verification
process is required to identify which aspect is covered or satisfied by the logical
elements of the system. In Chap. 7, when the connection between requirements and
logical blocks shall be analyzed, it shall be even realized that dependencies will be
used backwards, to evaluated the requirements coverage.

The SysML allows a even more schematic view over the established depen-
dencies. Matrices and table are exploited as an alternative to the formal represen-
tation of diagrams. Within the software tool, it is never important how the link is
established, because the records of the database are the same, although the repre-
sentations are different and just in format. A matrix form is often used to summarize
these data, as shown in Fig. 5.18 shows for the first use case of the industrial test
case.

Once that the requirements are traced onto the use cases, the SDs are built to
describe the operational scenarios of the system, as is shown in the previous section.
In this context, the operations are instantiated together with the different interac-
tions among actors and use cases. These operations specify new aspects of the
system or new features, to be taken into account, especially for what concerns the
interactions with users. As a second step, some new requirements are then defined,
depending on the different operations, characterizing in a better way the System of
Interest. The RDs can be again used to summarize the links and the dependencies
instantiated among the model elements. An example of this process is depicted in
Fig. 5.19, for the industrial tests case.

This is only a brief overview of the process, but usually a high number of
requirements can be derived with this approach in the whole set of design phases.
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In the industrial test case, for instance, it is possible to consider some new
requirements.

• Receive mode from pilot: this operation, associated to the control use case,
states that the system shall wait for the pilot decision to specify the system
mode. The derived requirement is:

– The system shall support the Flight Crew by providing the activation request
message for each operating mode.

Fig. 5.17 Traceability among high level requirements and use cases in the Operational Analysis
(Industrial test case)
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Fig. 5.18 Matrix view (detail) for the first use case of the industrial test case

Fig. 5.19 The requirements derivation process from operations
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• Show ice info: this operation introduces the display of ice information, being
related to the monitor use case. The associated requirement is:

– The system shall provide the ice condition information (visual) to the Flight
Crew.

• Show HIGH Active: this operation specifies that the system shall show when
“high” cycle mode is active. The requirement translates it into:

– The system shall provide the operational mode information (high or low
speed cycle) to the Flight Crew.

• Show system ON: this operation states the need to have an evidence of the
activation of the system. The requirement responsible to specify this feature is:

– The system shall provide the status data (on/off) to the Flight Crew.

This process can be repeated for all the operations, and the specification can be
considerably enriched. All dependencies have always the “trace” stereotype and have
direction requirement-operation (following the same concept specified for use cases).

Eventually, new requirements can be then registered within the database (the
IBM DOORS® in this case), through some specific procedures, involving the
MBSE software. This is usually referred to as backward synchronization and
consists in the most powerful feature of the MBSE design, since the requirements
are stored as soon as they are defined within the project. The embedded definition of
requirements is quite effective, since it allows keeping the configuration control of
model elements, instead of basing on documents and reports, like within the
documents-based approach, where requirements defined in the Operational
Analysis can easily fall in dark spots.

In all the three steps involving the requirements management and derivation, not
onlywithin theOperationalAnalysis, a crucial issue to be faced is the interdependency
of model elements. A sort of optimization process is exploited. The coexistence of
unnecessary elements is avoided. For this reason, each requirement is usually referred
to a single model element, but one model element can generate more requirements,
i.e. if two elements are associated to the same requirement, it is possible that one of
them can be neglected or re-arranged in a different way. This is not generally true,
when considering stand-by or redundancy systems, as in aeronautics. It is specifically
requested to have different elements capable of performing the same functions or
operations. This detail will be an issue of the Functional Analysis, in Chap. 6.

5.5 Synthesis of the Operational Analysis for Both
the Test Cases

The Operational Analysis is surely one of the most important phases of the MBSE
design process. It allows providing a first sketch of the operational scenario for the
System of Interest, starting from the actors’ objectives and high-level requirements.
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This is the phase characterized by the highest level of creativity, for the designer,
since it starts from the blank sheet.

Its main function is the definition of scenarios, through which the high-level
behavior of the system is described. It is based on the objectives that the actors want
to reach and on the instantiation of proper operations to allow the interaction among
the different entities. The Use Case and Sequence Diagrams are typically used, in a
combined process, relaying on traceability.

Some important issues have been highlighted.

• Actors are external entities interacting with the considered system. They want to
reach some objectives, by exploiting the system. Depending on the way they are
related to the objectives, they can be classified as primary, secondary or
shadows.

• The objectives of actors can be modeled as use cases, which act as the main
reference model objects for the entire MBSE design of the proposed test cases.

• The connection among actors and use cases is implemented through the SysML
associations, being the basis for defining scenarios and interfaces with entities.

• The use cases can be detailed through different types of dependencies, to express
some dedicated or low level objectives allowing the traceability.

• The Sequence Diagrams can be used to define the scenarios, which include the
sequences of interactions among actors and use cases and represent their
exchange of information.

• The Use Cases (in the didactic test case) and the Operations (in the industrial test
case) are the main model elements of the Sequence Diagrams. They provide a
first definition of the system behavior and of the architecture of input/output
with actors, to be detailed in subsequent phases of the MBSE design.

• The sequences described in the Operational Analysis may be subjected to some
change, during the MBSE design. Therefore, a deep detail is not required in this
context, although feasible sequences are developed, to be compatible with the
domain in which they are performed.

• In the industrial test case, many typical interactions among actors and use cases
were explored. They concern a common scheme for the data exchange, based on
the Request-Confirm-Display triplets, for active and primary actors, and con-
tinuous interfaces, for shadow actors and stakeholders. The SDs typically deal
with primary actors, although the operational scenario may include also the
effect of the relations with secondary ones.

• To model the interactions, different SysML elements and semantics can be used,
within the sequence diagrams, to segregate the information, by creating some
small scenarios, exploiting the completeness through the traceability.

• The Use Cases can be related to the Requirements, and to the Customer Needs,
with a refine relationship, that identifies either the requirement or the use case to
be refined.

• The requirements can be derived directly from the model elements of the
Operational Analysis and embedded within the diagrams. As a first step,
high-level requirements are traced onto the use cases, and the requirements tree
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can be built, depending on the instantiated relations. New operations and
modelled interactions among entities in the SDs can be used to derive new
requirements, always using soft dependencies, to populate the low levels of
requirements tree, being implemented through the Requirements Diagrams.
The MBSE capabilities of traceability allow tracing the new requirements and
their relations with the model elements. Moreover, the updating of the
requirements specification is guaranteed by the connection with the database
managed by the IBM Rational DOORS®.

The Operational Analysis may be implemented in different ways, and with some
other diagrams, different from those used in this handbook. The semantics of
diagrams themselves can be different, depending on the use, which is expected for
the model, and on the way in which the designer wants to describe the model
objects. The SDs, for example, appear in many variants, in literature. The definition
of operations, the relations between use cases and actors, as well as the final format
can be subjected to extensive modifications. There are also many differences when
the model is designed for a dynamic verification or simply for a validation through
the traceability and impact analysis.

As it will be shown in Chap. 6, for the Functional Analysis, if a diagram shall be
executed and animated to test its correctness, a higher attention to the formal
representation and coding of its elements shall be paid, to avoid debugging issues.
If the diagram is conceived to provide a static view of the described scenario, more
flexibility is allowed, when defining model objects, although a coherent represen-
tation of elements is always necessary to obtain a suitable level of traceability
within the model.
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Chapter 6
Functional Analysis

Abstract The next step of Functional Analysis is herein investigated. The existing
relation between Operational and Functional Analyses is first defined. The imple-
mentation of the Functional Analysis is then performed, through the SysML. How
the traceability and the requirements allocation are assured is shown. The system
behavior is fully analyzed. The functional architecture is then derived, for the two
test cases. Finally, the main items of the Functional Analysis are resumed.

6.1 Introduction

Notwithstanding the apparent simplicity of the terms Functional Analysis and
function, these notions are often faced improperly, due to lack of a common
nomenclature within the design process and to the influence of different engineering
domains and practices (CRYSTAL project, 2015). In fact, depending on the context
of the analysis, the process used and the tasks performed, these terms may assume
several meanings. The best way to identify a general accepted definition is to rely
on SE standards (listed in Chap. 2) and glossaries of concepts1 that generally
establish a strong basis for common knowledge, not only in terms of the single
notion, but also for the complete and consistent set of relations with other ones.
With regards to this aspect it is possible to define a function as the representation of
what the system shall do to realize a specific need, usually expressed by a stake-
holder, within a defined scenario of the selected mission, which can be formally
stated as a requirement. Consequently, the Functional Analysis is the iterative and
recursive technique of identifying and describing the functions of a system, aimed
at defining its functional architecture (Friedenthal, Moore, & Steiner, 1999) As
stated in the SE standards and glossaries, the function itself can be expressed as a
specific sequence of lower level operations, which represent its practical imple-

1In addition to those proposed in the main literature, in handbooks, some specific glossaries were
assessed within some funded research projects or by some associations as the AFIS—Glossaire de
Base de l’Ingénierie de Systèmes (www.afis.fr) and the CESAR Project—Global glossary, among
the project deliverables.
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mentation. For this reason, a function may be considered not as an atomic element,
but as a part that can be further decomposed and analyzed. Several discussions are
undergoing about this open issue, since the decomposition of a function usually
leads, within the typical approach of SE, to the identification of derived functions,
up to the lowest possible level, not directly involving operations. As a consequence,
functions and operations appear not to be the same thing. However, especially when
implementing the approach through models, the straightforward use of operations
as functions is quite common. This is actually very popular in MBSE methodology,
because of the adoption of specific semantics and diagrams, which allow defining
the system behavior, even without a tangible representation of a functional tree,
focusing on the sequence of operations. This detail will be clarified later, in this
chapter, when applying these concepts to the test cases. Apart from the actual use, a
function is always aimed at reaching an outcome, i.e. a stakeholder need or
expectation concerning the system behavior in a peculiar operating environment.
This is also the reason why the relationship between functional and operational
aspects is so tight, causing sometimes problems concerning their separation, when
performing the analyses. Finally, a function is always referred to a requirement,
particularly a functional requirement, which is a statement that identifies what a
product must accomplish, to produce the required results (Chap. 7).

The Functional Analysis can be interpreted as a general “technique”, which is
focused on the identification of system functions and on their interactions. This is a
critical point and one of the most common reasons for misunderstandings in SE.
The Functional Analysis of SE, independently from the use of a model-based
approach, shall be always aimed at obtaining a functional architecture, defined as
an arrangement of functions, sub functions and their interfaces that describes the
execution sequencing, conditions for control and data flow (Friedenthal, Moore, &
Steiner, 1999), rather than identifying the functional tree (i.e. the diagram
describing the hierarchical decomposition of system functions). The so-called
functional breakdown by itself is not sufficient to consider all those kinds of
relations and links (internal and/or external) among functions and the environment.
Moreover, with the adoption of MBSE methodologies and tools, the functional
architecture has been established as a dynamic representation of the functional
behavior of the system and its interconnections, which can be updated continuously
with the development of the analysis both on the same system level (iteration) and
on lower systems levels (recursion), overcoming the static representation of a
hierarchy model relaying on a simple tree.

Generally, there is never a single way to represent the different phases of the SE
design activities (Holt and Perry, 2013) and even the Technical Standards (Chap. 2),
which are a little bit more adopted cross-domain, and provide different set of
combinations of phases. This is a clear proof of the size of SE approach for complex
systems and of the difficulty of adopting the optimal process to face this challenge in
many domains. For the purposes of this handbook the term Functional Analysis will
be adopted since now to identify the process of defining the functional architecture
of the system and the functional breakdown.
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6.2 Handoff Between Operational and Functional
Analyses

The Functional Analysis in SE has the objective of defining the functional archi-
tecture of the system and characterizing its functional behavior. The starting point
is, of course, the result of the Operational Analysis, where stakeholders’ needs have
been already identified as well as the main capabilities that the system shall be able
to support. The key point of the handoff to the Functional Analysis is the different
view that the designer shall consider. The Operational Analysis is focused on what
the stakeholders want to carry out and what the actors want to reach by using the
system, so, it is notably a stakeholder-centered phase. The Functional Analysis
focuses the attention on the functions that the system shall be able to provide to
meet the stakeholders’ requests; indeed, it is a system-centered phase.

The different approaches used to face the design between the first phases usually
affect a lot the following ones, being the most important feature that allows to
distinguish different methodologies. Not surprisingly, this is also another critical
point that can lead to some technical errors, when the analyses are coupled in an
inappropriate way. In any case, one of the most successful solutions of the MBSE
approach, as was described for the Operational Analysis, is the use-case-based
rationale, aimed to drive the Functional Analysis upon the goals and/or capabilities
requested by the stakeholders. The use case (Chap. 5) is characterized through the
definition of the system behavior, in terms of operations (i.e., functions) necessary
to reach the expected outcome. Many SysML diagrams can be used for this par-
ticular task, as the Activity Diagrams, Sequence Diagrams and State Machine
Diagrams, whose sequence, order and combination are strictly related to the
method used for the analysis (OMG, 2015).

To formalize the functional architecture, some structural SysML charts like the
Internal Block Diagrams and Block Definition Diagrams can be deployed,
enriching and connecting the amount of information coming from the behavioral
ones. One of the advantages of the MBSE approach is that the result of the analysis
can be also directly assessed and verified through a logical or formal simulation,
allowing a quick feedback about the expected systems characteristics. Some
functional scenarios may be assessed and the relations among the system and the
external actors can be analyzed at different levels. The MBSE methods using the
SysML language are considerably relying on a verification through simulation,
because of the number of possibilities offered to the designer to operate. In this
context, the simulation is the very last step of the Functional Analysis. It is used to
verify that the system functional behavior, architecture, and breakdown structure
have been correctly derived, in accordance with stakeholders’ expectations.

6.2 Handoff Between Operational and Functional Analyses 149



www.manaraa.com

6.3 Implementation of Functional Analysis
Through the SysML

As stated in Chap. 3, many formalisms and diagrams of the SysML may be used to
traduce the Functional Analysis into a concrete implementation. They are applied to
several design phases, therefore their meaning should be herein clarified. A general
classification of the SysML diagrams was already proposed in Chap. 3. It looks to
distinguish the formats used in different phases.

The behavior diagrams represent a standardized flow of data to describe the
system status and transitions, under specific input, and within a given scenario.
Namely, those diagrams are built around the main concepts of action, operation and
state. The Activity Diagram is a flowchart of actions. Each action is one of the main
tasks that the system shall perform within a workflow. To achieve the task goal,
some steps, namely the operations, are required. Thus, the action is a sort of
collector of operations, which are the basic bricks necessary to define the system
behavior. Each activity is the collection of actions. It is remarkable that an action is
not a state, since it does not define a change of system status. It is focused on the
performed operations and never on the system modes. The interactions with actors
can be implemented onto the actions, when the interfaces with elements outside the
system are required, through some simple “pin” connectors. The so-called events
can be defined within the different branches of the flow, to establish some specific
occurrences (either continuous or discrete). They could be important for the system
behavior, when they trigger another set of actions or they set some conditions, at the
nodes of flow. The Activity Diagram is usually the first used in the Functional
Analysis to describe the system behavior, in each use case. It exhibits a high level
of abstraction, a simple structure, an easy way of representing data. It supports both
the “black box” and “white box” views, i.e. it can be drawn even without including
a clear reference to the elements performing the actions or, by converse, it can be
expressively conceived to allocate those actions to logical and physical entities, in
subsequent phases of the analysis Fig. 6.1 shows a portion of the “black box”
version of a typical Activity Diagram. This is a common representation of a data
flow, going from the reception of an event (“Start”) to the selection of the branch
(flow of actions). The depicted diagram shows also some elements above men-
tioned, as actions, conditional connectors, call behavior, actor pins, here sent the
pilot and a next event (“Send”).

The State Machine Diagram, or Statechart, is a representation of the evolution of
system states and of their transitions within a use case or a scenario, depending on
inner and outer inputs. It is a powerful tool to be used to evaluate the functional
behavior of a system, since it can be verified by a simulation. The State Machine
Diagrams contain all relevant information coming from other diagrams, and a sim-
ulation can be a reliable way to test the nominal behavior of the system, in terms of
operation modes, as a synthesis of the whole functional design. A state represents the
status of the system at a defined time, for given inputs and within an execution path.
Operations are included and performed during the activation of a state. The state may
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also contain other elements, like logical and mathematical equations, to process the
received inputs and produce some related outputs. The State Machine Diagram can
be even chosen as a unique behavior diagram to describe the whole Functional
Analysis, when the system behavior is strongly characterized by states, or as a last
step of the Functional Analysis. A nested architecture is possible also for the State
Machine Diagram, and the communication between diagrams is performed through
the instantiation of some dedicated Internal Block Diagrams. In the Functional
Analysis, this approach is aimed at connecting the entities within the use cases.

Figure 6.2 shows an example of State Machine Diagram. Its structure is similar
to the Activity Diagram, although the main elements represented are states. This
difference is relevant, the state may contain many operations, therefore it provides a
wider view on the system behavior than the contents of the Activity and Sequence
Diagrams. States are connected through transitions, which specify the evolution of
the followed path, depending on the guards and triggers which activate and
deactivate the flow. The example shows a typical structure of the SMD, with two
main states. The first one (“State_0”) is usually used to specify a passive behavior
(such as “switch-off” or “wait” states), whilst the second concerns the active
behavior of system, and is often more complex. “State_1” contains two branches,
being executed in parallel, where some other sub-states are connected to each other,
depending on the guard condition specified on the transition (here not shown on the
right to simplify the sketch).

Fig. 6.1 Elements of a typical activity diagram within the functional analysis
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It was previously mentioned that the State Machine Diagrams are capable of
mutually interacting, when the SysML blocks and parts to which they are referred
are connected within an Internal Block Diagram. These connections allow the
exchange of discrete events and continuous signals, evolving during the execution,
by creating a simulation environment with clear boundaries, like in physical sim-
ulation. Therefore, the relation between the State Machine Diagram and the
structural diagrams is stronger than it preliminary looks. Actually, the Internal
Block Diagram and Block Definition Diagram are used in an extensive way within
the Functional Analysis. They cover two important issues related to the functional
architecture as the communication topology and the hierarchical structure of blocks.
The block is the fundamental element of the SysML-based design. It is a modular
unit and defines a collection of features to describe an element of interest
(Weilkiens, 2008). The blocks may include a description of behavior, attributes,
operations and structural features, like ports, interfaces and connectors indicating
the hierarchy of elements. Also important is the part. A part is the contextualization
of the block, and is used to instantiate it into a defined operational background, to
implement a specific behavioral issue. The part inherits the main features of block
and allows creating some specific characteristics, for the intended use of block into
a scenario. The SysML structural diagrams use extensively both blocks and parts.
The Internal Block Diagram is widely used to define the network established
among some selected entities and enables the connection of several State Machine
Diagrams. It is composed by parts, being eventually characterized by some dedi-
cated behaviors. They are interconnected by means of ports and interfaces, and are

Fig. 6.2 Example of state machine diagram applied to the functional analysis
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always referred to a context, a use case, or a block. The boundaries of this diagram
identify the limits of the representation and state precisely the context in which the
network is developed (e.g. a function, a use case, a scenario). Ports and connectors
are usually different and their selection depends on the relation to be instantiated.
They are used to carry continuous signals among the parts, within the context, and
across the diagram boundaries. One important duty of the Internal Block Diagram
within the Functional Analysis concerns the deployment of a connected functional
environment, where all messages and communication needs, defined through the
behavior diagrams, can be managed. Particularly, the identification of the functional
interfaces is a critical issue, since it allows to detect the interactions and exchange
of operations. As this exchange is usually discrete, the interfaces are used together
with a list of required and provided operations, established in a contract, charac-
terizing that interface to make it unique. The links drawn in the Internal Block
Diagram are very important to drive the formal simulation. In Fig. 6.3 a typical
Internal Block Diagram where the aforementioned elements appear is shown. In the
example, the diagram contains three parts, interconnected by ports and interfaces.

The Block Definition Diagram is focused on the structure of blocks, within a
functional scenario, like in a functional tree. The relations between blocks and parts
can be understood looking at the whole diagram (Fig. 6.4). Blocks are related to
other ones by some connectors to instantiate a sort of father-son relationship and
create a multilayered structure. The block defined as a son of another one by a

Fig. 6.3 Elements of an internal block diagram within the functional analysis
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directed composition dependency looks like a part of the father block. This reflects
the general definition of part. The son block is used within the specific and limited
context of the father block. Therefore, the Block Definition Diagrams have a sig-
nificant impact on the communication network, since they establish the context
where the parts will be instantiated. Concerning the Functional Analysis, this aspect
is mainly used to support the identification of scenarios, of their boundaries, when
implementing some networks.

A typical use of the Block Definition Diagram in this context is the deployment
of a functional tree to collect the operations and to define the functions which shall
contain them. This is an alternative representation of the functional breakdown of
the system, as it shall be shown in the test cases.

The set of diagrams here presented is a basis for the complete representation of
the Functional Analysis phase, through the SysML. The meaning of diagrams can
be different phase by phase, although their practical implementation is similar. In
Chap. 7 some typical concepts of the Logical Analysis will be introduced. The
differences with the Functional Analysis will be even remarked.

Fig. 6.4 Elements of a typical block definition diagram within the functional analysis
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6.4 Requirements Derivation, Traceability and Allocation

The connection with the requirements specification is quite tight, within the
Functional Analysis. The identification of system functions, directly derives from
the Operational Analysis, as a consequence of stakeholders’ expectations, and the
functional requirements are collected, during the early steps of the design process.
When the functional architecture is developed, the information about functional
interfaces and functional behavior increase and new requirements are added. The
requirements specification is a “living document”, especially during the early
phases of the process, and some precaution shall be applied to trace the relations
among requirements and system operations and to track their evolution. So far, a
good MBSE project should be an interconnected project, i.e. its parts are fully
defined, only when a network of relations exists. This is one of the most powerful
advantages of the MBSE approach. The dominant idea is that data are not only a
stand-alone content of the artifacts involved, but also a set of relations shared with
other artifacts, at the same or different level of analysis.

A very important aspect of the design process is the traceability of requirements,
especially in presence of a complex system. In the context of the Functional
Analysis, the traceability assures a complete identification of the relations con-
necting requirements and functional elements, in terms of derivation, evolution and
coverage since their early stage definition.

The requirements definition process affects all the analysis levels and is sub-
jected to a continuous updating. This makes the traceability very useful for the
product development. It is remarkable the distinction between traceability inside
and outside the requirement specification.

The traceability internal to the requirement specification involves their evolution
and their mutual links in terms of derivation (relation between father and son re-
quirement) or even a simple involvement (reference to a similar topic, influence on a
related issue). This is usually managed inside the specification and it is exploited as a
map to explore how it has been organized and managed. The traceability external to
the specification deals with the impact analysis, i.e. it identifies the element of the
functional architecture related to a selected requirement.

Besides the requirements traceability, the management of the design process is
an important task. It proceeds with the instantiation of relations between functional
elements. It sets up the dependability, being the set of relations assigned to the
model elements to trace their interrelationships. These relations depend on the
methodology applied for designing. One of the most important dependencies is the
so-called allocation, which is used to assure the consistency between design phases,
especially when considering the handoff between the Functional and the Logical
Analysis. The allocation is interpreted as a formal transfer, between two subsequent
steps of analysis, of one or more element of previous phase to another one of the
following phase, which can carry out its duties. A typical allocation involves the
transfer of system functions onto system elements.
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Within a sequential approach like the MBSE supports, the Functional Analysis is
essential for traceability and dependency, since it allocates the outputs of the
requirements specification onto the logical elements of the Logical Analysis.
Moreover, it includes even all the internal dependencies among functional elements.

This organization implements the fundamentals of the SE approach and assures a
continuous stream of connected resources along the product development.
The MBSE tools allow representing the dependencies in most of the SysML dia-
grams. Nevertheless, to visualize the requirements traceability, a good practice is
resorting the Requirements Diagram. It may contain the whole set of relations
among requirements (derivation and structure of the specification), among func-
tional elements (hierarchy, connectors) and between the specification and the
functional architecture (trace and other dependencies). Therefore, it makes possible
collecting the entire set of links within the boundaries of a single diagram (Fig. 6.5).

Some traced dependencies are shown among requirements and blocks. This is a
soft dependency, but is used extensively within the Operational and Functional

Fig. 6.5 Elements of a typical Requirements Diagram within the functional analysis
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Analysis to express some general-purpose links between model elements, to check
the requirements coverage, to perform an impact analysis, and to verify the con-
sistency of data.

Since this set might be huge, the visual representation may be confused. To solve
this problem, the MBSE tools provide even matrix and table views, having a
friendlier outlook (Fig. 6.6).

It is important to point out that the information are always the same, indepen-
dently on the representation preferred. The dependencies instantiated during the
design process, by the user and in different moments, are always stored by the
MBSE tool without resorting to a specific view. Matrices and tables allow sum-
marizing the requirements for a coverage verification, but diagrams give a global
impression to the user of relations and requirements defined. A similar exigency
occurs when the Logical Analysis is performed, as is shown in next Chap. 7.

6.5 Results and Outputs for the Logical Analysis

Some typical results of the Functional Analysis concern the so-called realization of
the use cases, the derivation of system functions and the definition of the functional
behavior. Those activities include several tasks to be considered by the designer.

The use cases shall be characterized through a high-level description of the
interactions among the system and the external entities involved. The related output
is a set of behavior diagrams, like the Activity Diagrams, Sequence Diagram and
State Machine Diagrams, together with a possible introduction of a high-level
network of communication, implemented by one or more Internal Block Diagrams.

The derivation of system functions is related to the identification of actions and
operations characterizing the functional behavior, and is completed by the identi-
fication of states representing the system modes of operation. When a classical
functional breakdown is required to group operations, some Block Definition
Diagrams can be exploited. The expected outcome is a complete and consistent
functional architecture, made by a collection of actions, operations and states along
with the messages and interfaces network.

A formal simulation can be performed to assess the functional behavior of the
system, under specific scenarios and use cases, producing an executable version of
the State Machine Diagrams. Furthermore, the functional architecture shall be

Fig. 6.6 Elements of a matrix view for requirements traceability
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enriched with requirements traceability links and shall be organized using depen-
dencies, where applicable, to keep consistency.

These activities shall be performed also considering what is necessary to perform
the next phase, notably the Logical Analysis. The functional architecture is its main
input, because it is focused on the design of a system structure able to meet the
functional behavior and to perform the deduced functions.

6.6 Implementation: Deriving the Functional Architecture

The Operational Analysis provided some interesting results concerning the test
cases. It is now necessary understanding how the user should move to perform the
Functional Analysis. Some inputs are obtained from the previous stage, as is herein
briefly resumed.

• The main actors exploiting some interfaces with the system have been identified,
together with their objective (i.e. the use cases).

• Some operational scenarios have been defined, by instantiating relations among
actors and use cases.

• The operations have been derived within those scenarios, and new requirements
have been determined.

• The traceability among model elements is guaranteed by the instantiation of
dependency links. The requirements specification has been updated, by con-
sidering the results of the analysis (backward synchronization from model to
database).

It is now possible to analyze the use cases in detail, by defining the system
behavior, strictly required to finalize each objective requested by the actors. It might
be said that the focus shifts from an actor-oriented to a system-oriented view. This
means that new actions, operations and states for the system can be defined con-
formingly with the data already available from the Operational Analysis.

Several SysML behavior diagrams will be defined to derive these new features
and, notably, the Activity Diagrams (ADs), Sequence Diagrams (different from
those of the Operational Analysis) and State Machine Diagrams (SMDs). The
functional tree will be also implemented through some Block Definition Diagrams
(BDDs) and the interface network shall be instantiated, through some Internal
Block Diagrams (IBDs). In this way, the functional behavior and the functional tree
will constitute the functional architecture of the system.

Requirements will be furthermore derived from some new model elements and
their specification will be updated consistently. A final verification through the
diagram animation will be also provided. Since the Functional Analysis is the core
of the MBSE approach, it is performed in different ways, depending on the applied
methodology and process. Some alternative solutions to organize the workflow will
be discussed and the main common points and differences will be highlighted.
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Particularly, considering common points, it shall be clearly stated that, apart
from the workflow applied, the Functional Analysis is usually characterized by:

• A use-case-based analysis. This means that the use case is the main instance
around which the model-based design is performed, being the focal point for
properties of model elements and a node for traceability links.

• A black box approach, since the behavior of the different elements is not allo-
cated onto logical or physical entities.

6.6.1 Didactic Test Case

Once the Operational Analysis is completed, a next step consists in defining the
abstract functions of the system, within the Functional Analysis. The Functional
Analysis models the functions just required to perform the system mission, by
respecting some environmental constraints.

The Functional Breakdown Analysis lists the functions represented by a Block
Definition Diagram (BDD). In the Functional Analysis, the Block Definition
Diagram is used to describe the system sub-functions and how they are related to
those of the main system, defining their hierarchy.

It looks important showing here the expected behavior of the system in terms of
abstract functions, while describing how functions are implemented will be done
later. The functions are modeled using blocks and the BDD shows the system
decomposition in subsystems, representing either a function or a physical compo-
nent, to be considered by the functional or physical analysis, respectively.

The Functional Analysis provides a first description of the main system function,
within the selected context as a block, and its decomposition in subsystems,
including other functions. These must be implemented to assure that the main
function could be completely performed.

In the didactic test case, the Functional Analysis starts by describing the
Functional Architecture depicted in Fig. 6.7. It depicts the decomposition of the
main Laying Head system function into six sub-functions, as follows.

• Control Function—to control the balance, stability and dynamics of the system
and to stop the system in case of emergency;

• Measuring Function—to measure the size of the rod and amount of material
coiled and stored, but even the power consumption, the electric current and the
spin speed;

• Shaping Function—to shape the wire rod into coils;
• Signaling Function—to display the system status and information to the

operator;
• Monitoring Function—to monitor the system, e.g. the shaft position or the rotor

vibration, or to detect the lack of power supplying;
• Rotating Function—to convert the translational motion of the rod into rotational

motion.
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The main block represents the Laying Head, while the other Function Blocks are
connected to the main system, with a composition relationship. This association is
represented by an arrow between the main block and its blocks and a single solid
diamond. The number of entities per each connected block can be written just aside
the arrow.

All the use cases defined within the Operational Analysis (Chap. 5) should be
supported by these functions and, vice versa, every function should be used by the
system. Starting from the use cases, the Internal Block Diagrams (IBD) are used to
describe the system functions, enabling each use case. The difference between IBD
and BDD is due to the possibility of linking some parts via connectors and ports, to
describe how the functions are related to perform the use case.

Usually, the main system function is represented as an open box, in which some
other subfunctions are inserted. The actors are represented outside the main func-
tion block and are directly connected to the subfunction blocks. Each subfunction is
detailed in parts. A part is a specific function of the block and is described by the
notation part_name : part_block.

In the example, the functions needed to perform the use cases are described
using some Internal Block Diagrams. Only the use cases “Start the process”, “Stop
the process”, and “Require suspension and rotation” are herein described, to sim-
plify the description.

In Fig. 6.8 the use case “Start the process” is shown. According to the Use Case
Diagram, the Operator and the Monitoring and Emergency System actors interact
with the system, to start the steelmaking process and are outside the main function
block “LayingHeadFunction”. The system functions involved in this use case are
the Measuring Function and the Signaling Function. The parts “Preliminary Check”

Fig. 6.7 Functional Architecture of the laying head system
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and “Unlock system” of the Monitoring Function and “Display system status” of
the Signaling Function are connected via connectors and Flow Ports. These Flow
Ports basically show what can flow through the block, and in which direction, either
in or out.

The process starts only after a preliminary check, aimed at verifying that the
Laying Head can be safely unlocked and can be made rotating. Looking at the IBD,
it can be easily read that to “Start the process” the system should be able to provide
a preliminary check as soon as requested by The Operator. It sends some data to the
Monitoring and Signaling functions, respectively, to unlock the system and display
the system status. The Monitoring function sends even a message to the Signaling
function. The function of displaying the system status is then used by the
Monitoring and emergency system.

Similarly, Fig. 6.9 describes the use case “Stop the process”. The process can be
stopped either by The Operator or by the Monitoring and emergency system. In
regular operation, the process is stopped when the wire rod length reaches a
required value, while in case of failure, an emergency stop is launched. Therefore,
the IBD shows that the Monitoring and Emergency system interacts with the
Control function to request an emergency stop and with the Measuring function to
monitor the length of the wire rod. The Operator interacts only with the Signaling
function, through the displayed information about the system status. The Signaling
function receives information on the requested stop from the Control function, in
case of either emergency or normal operation.

The “Require suspension and rotation” use case is described in Fig. 6.10. To
enable the rotation of system, some measurements and controls need to be done in
advance. The Monitoring and Emergency system requires the measurement of

Fig. 6.8 IBD of the use case “Start the process”
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current, temperature and spin speed of the Laying Head system, being controlled by
the Control function, as well as of unbalance, stability and dynamics. The
Measuring function detects the position of The Rod and then the rotation is per-
formed by the Rotating function, enabling the conversion of translational motion of
wire rod into rotation.

Fig. 6.9 IBD of the use case “Stop the process”

Fig. 6.10 IBD of the use case “Require suspension and rotation”
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It is significant that the IBD describes also how requirements are traced at this
stage of the Functional Analysis. The dependency is here indicated with the
notation �trace�, which is a weak relationship, but is useful to allocate re-
quirements to the system functions.

The BDD and IBD describe the system functions and their interconnections in
each use case scenario, but the system behavior is described by the State Machine
Diagram and Activity Diagram, being focused on system states and activities,
respectively. A Sequence Diagram can be also used, although it also includes all the
actors. Two among those three diagrams are usually enough to completely describe
the system behavior, and their selection is up to user. In this test case, the State
Machine and Activity Diagrams are preferred.

The State Machine Diagram (SMD) describes the dynamic transition between
system states, which is activated by some event or condition, to enable its execu-
tion. In Fig. 6.11 the SMD of “Require suspension and rotation” is shown. Its main
elements are herein listed.

• The initial pseudostate is described by a solid circle, that specifies the default
state of system at the beginning.

• The state is a rounded rectangle, representing the system status in operation.
• The transition is described as an arrow, linking two states, and is defined by

triggers, guards and effects.
• The final pseudostate, is once again a circle, in which the operation is

completed.

Change of states is effected by transitions defined by trigger events, guard
conditions and effects with the notation: <trigger>[<guard condition>]/
<effect>.

A trigger indicates an event that can cause a transition to the target state.
A guard is evaluated to test whether the transition is valid or not, and the effect is a
behavior executed once the transition is triggered.

A simple state is represented as Atomic State, while the Sequential State contains
a group of sub-states, which can be linked to an atomic state or another sequential
state. Within a sequential state, the initial state must be even defined.

In the example, the rotor must be suspended at standstill. Before starting the
rotation, the rotor needs to be centered and balanced, and a calibration of sus-
pension is performed. It is usually operated above its critical speeds, but always
below the instability threshold, to avoid a dangerous increasing of the whirls
amplitude. Therefore, the system is operated within a defined range of spin speed.
The wire rod will be suspended and rotated by the system, only after that the rotor
reaches the condition of stable rotation in the so-called supercritical regime,
assuring the best self-centering.

At the beginning, the system is at standstill and, as soon as the condition
“Levitate” results valid, it enters in the sequential state “Rotor lift off”. The rotor
shaft is now suspended, and the state describes the calibration operated to center the
rotational axis within the bearings, as soon as it is centered, the “Rotor calibrated”
state is reached. This allows the system exiting the sequential state. It is then
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accelerated, to reach a defined spin and the state “Supercritical rotation”. The
system can transit to the “Supercritical rotation and rod coiling”, when the rod
feeding starts. When a certain length of the wire rod is measured or an emergency
occurs, the rod feeding is stopped and the system comes back to the “Supercritical
rotation” state. As soon as the system receives the command “Decelerate”, it
decelerates and finally it stops rotating, entering the “Stop rotating” state. The rotor
shaft is still levitating, therefore, to stop completely, it requires that condition
“Land” is activated, to go back to a standstill position, which corresponds to the
first atomic state.

It can be understood from this example, that the system behavior is described by
one behavioral diagram for each use case, but it is even possible resorting to a
single state machine or activity diagram, which includes all the use cases,
simultaneously.

Fig. 6.11 STD of the use case “Require suspension and rotation”
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This case has been modeled for every use case, using a State Machine Diagram
and an Activity Diagram.

In Fig. 6.12 the AD of “Require suspension and rotation” is depicted. Its ele-
ments are herein defined.

• The initial node is a solid circle, where the system’s activity begins.
• The atomic action is a rounded rectangle, showing the action performed by the

system in operation.
• The transition, looks like an arrow, connecting two activities to specify the flow

of actions, and related inputs and outputs.
• The activity final is a circle, in which the activity ends, being completed.

According to the figure, the system lifts off the rotor shaft, and then three actions
are executed contemporarily, as the fork node indicates. The rotor shaft status is
checked and the temperature inside the bearings and the rotor spin speed are
measured. Each action may have two possible outputs but, as the joining node
indicates, only when all those three actions give the required output, the system can
execute a next action. Otherwise, actions previously described will be repeated till
the output changes. To implement that strategy, a decision node with one input and
two outputs is placed immediately after these actions. A loop is foreseen, since the

Fig. 6.12 AD of the use case “Require suspension and rotation”
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system can come back to the actions to be repeated. The outgoing flows are defined
by a guard condition, stating the threshold output value to proceed.

In this case, the laying head can rotate the rotor shaft, only when the guards
[Shaft==UNLOCKED], [T<Tlim] are true and [SpinSpeed!=0] is false. In
other words, the system can safely execute the rotation, only if the rotor shaft is
unlocked, the temperature T inside the bearings is lower than a limit Tlim, and its
spin speed is still null. Otherwise, a rotation might detect an anomalous operation,
potentially dangerous, since some power is applied to the rotor shaft by another
system, not by the dedicated motor. The activity can be considered completed as
soon as the system is rotating the rotor shaft.

6.6.2 Industrial Test Case

In this case a use case based analysis is implemented. Both the MBSE technique
and of the most complete set of SysML diagrams are exploited to characterize the
system behavior. The Activity (ADs), Sequence (SDs) and State Machine Diagrams
(SMDs) as behavior diagrams, and the Internal Block (IBDs) and Block Definition
Diagrams (BDDs) as structural diagrams are applied. The main diagrammatic
element is the operation, which is defined through the behavior diagrams, since its
first definition within an Action to its final instantiation within a State. The oper-
ation is directly allocated onto some logical block, which identifies a practical
system element, or a Product, within the next phase. This means that the system is
directly allocated on a possible logical/physical implementation to define the
Product Breakdown Structure (PBS), after the Functional Analysis.

This approach is characterized by a high level of granularity, i.e. the depth of
details is quite good, and this is expressively because the operation is the key
element and is focused on some very specific aspects of the system behavior.
Nevertheless, a dedicated functional breakdown identified by the functional tree,
through a BDD, is not always drawn. As a consequence, the level of analysis
making possible to derive consistently the operation is depending on the designer.
A special care shall be applied to avoid any mismatch between the details of
different use cases.

A direct allocation of operations onto blocks, for a straight implementation, is a
crucial issue. Real components often do not precisely fit the set of characteristics
specified by the functional behavior, thus making difficult a very specific allocation.
Two layers of implementation are often provided, exhibiting some important dif-
ferences between the Logical and Physical Analyses. The logical one is an inter-
mediate step, between the functional and the physical architecture. It is conceived to
allow the identification of suitable elements and components, with some general
features, at high level, of the final product, which will be described within the PBS.
It is possible, for instance, introducing a logical component as an “electrical
switch”, which is not yet related to the real component, as the Commercial Off The
Shelf (COTS) elements, with very specific features. Only the physical component
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shall be an “electrical switch”, with some specific characteristics, like maximum
voltage, current limits and customized production specifications, which allow
relating this element to a commercial device with well-defined properties. This
difference highlights the important role of the physical analysis, because it provides
a real identification of the PBS, within the SysML model. This strategy is herein
briefly described, for the IPS case study.

A first step is the implementation of some Activity Diagrams (ADs) for the use
cases. Figure 6.13 shows the diagram related to the use case of ice prediction. The
flow starts with a fork node, which introduces two parallel paths, because the
prediction is performed upon air and ice data. A preliminary set of actions concerns
the acceptance event and are placed at the beginning, since data may be missing and
the related action may not be executed. A global validation of data is required and,
after a consistency check, which leads to end in case of failure, the selection of
prediction type is performed, depending on the available information. The forecast
is then computed and some messages are sent, for monitoring purpose. The whole
flow is contained within an interruptible region, which is instantly left in case of
switch off signal.

A simpler representation is shown in Fig. 6.14, for the ice detection. As it can be
seen, different actions are performed in parallel and ice measures are transmitted at
the end of process, until that a switch-off signal is provided, and the interruptible
region is disabled.

Figure 6.15 shows the AD for the ice removing. The different surfaces of the
aircraft shall be equally protected from icing, as required by high level specification,
but a sequence of protection is defined here, for the first time. When the actuators
applied to a defined zone are activated, others are switched-off, to reduce both the
power peak and the global consumption, as is demonstrated by the numerical
simulation in Chap. 7. The AD for ice removing follows the same approach shown
for ice prediction and detection, with a single interruptible region, which can be
deactivated, when a switch-off command is received.

Let’s look now at the control and monitoring use cases, responsible to manage
the most of commands appearing in the ADs just shown. Figure 6.16 contains the
AD for the use case related to system control.

Two operating modes are foreseen, namely the auto and manual mode. This is a
relevant update to system behavior since for each scenario a separate set of actions
is identified. The selection of de-icing intensity is automatically regulated,
depending on the ice level, whilst, in the manual mode, an input from the pilot is
necessary to regulate the system. This can be very useful in case of failures of the
main control subsystem and for testing.

The Monitor AD is the most complex of the Functional Analysis. It includes
many algorithms to manage the different messages coming from the other use cases.
However, it is too large to be included directly, so a brief description is provided.

Three status of the system are hypothesized, notably “on”, “stand-by” and “off”.
Each status offers a pre-determined set of functionalities for command and control,
providing, at the same time, some important messages (visual/aural) to the actor
(pilot). For instance, as far as the “off” branch is considered, commands are disabled
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and the flow reaches the activity final. By converse, the “standby” mode allows the
system communicating some warnings about the ice level, to perform forecast and
measurements, whilst the “on” mode identifies the full system behavior, in moni-
toring. This diagram is helpful to sketch the logical map of the system behavior.

Fig. 6.13 AD for the use case related to ice prediction
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The Monitor use cases are the most difficult to be characterized, since they work
under several triggers, provided by actors. They are the core of the whole model,
since the behavior diagrams related to monitor are simulated, at the end of
Functional Analysis. This activity validates the model and offers a preliminary
overview on the working system, for given operating conditions.

Actions described by the ADs for the use cases are then instantiated as opera-
tions, in the related SDs as in Fig. 6.17 showing a partition of the SD related to ice
prediction. If the SD of Fig. 6.17 is compared to the SD defined within the
Operational Analysis for the same use case, it can be remarked that some operations
are similar, but some details have been added here to specify, for example, how the
forecast is computed and what kind of data are required. It happens the same for the
other SDs. Is relevant understanding that the operations used within the Functional
Analysis shall not be independent from those defined within the Operational
Analysis. Traceability shall be assured between the two analyses, through an
instantiation of dependency links among the operations. This allows an effective
coverage of the information translated from the operational to the functional phase.
This translation can be done by written matrices or drawn diagrams. As an example,
a visual traceability is sketched in Fig. 6.18, for a set of operations related to ice
detection. Some operations have been detailed in the Functional Analysis.

Fig. 6.14 AD for the ice detection use case
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Fig. 6.15 AD for the ice removing use case
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Sometimes, it is possible re-using the operations previously defined, although it
might be helpful re-defining them, within the right package, in the model tree.

The whole set of data coming from the first steps of the Functional Analysis is
summarized by some behavior diagram, as the State Machine Diagram (SMD). It
allows working with states, bigger elements than actions and operations. They rep-
resent some complex operational status of the system, while working, and include
multiple tasks. Moreover, SMDs are usually adopted to simulate the system behavior,
because they can be animated through some dedicated panels, to emulate the

Fig. 6.16 AD for the use case associated with system control
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Fig. 6.17 SD for the ice prediction use case
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interaction with actors. SMDs of different use cases can be then integrated by the
Internal Block Diagrams (IBDs), to perform a complete simulation of the behavior of
the whole system. The SMD concerning the ice prediction is shown in Fig. 6.19.

Fig. 6.18 SD for the ice prediction use case within the functional analysis

Fig. 6.19 SMD for the ice prediction use case

6.6 Implementation: Deriving the Functional Architecture 173



www.manaraa.com

This SMD contains two main states. The first one identifies the “switch off”
situation, when the system is not working and no tasks are performed. The “switch
on” state is, instead, more complex, since it hosts other sub-states. Each one con-
tains one or more operations to be executed. Transitions between states can be
activated through guard conditions or triggers, which can either be related to some
specific values that signals may assume in different situations, or to timing, as
shown by the trigger “tm” (which stands for “time millisecond”). In this case, the
“off” state is left, when the “on signal” is provided. The system enters the
“standby-on” state, being the same for both operating modes, since some features
shall be executed in both conditions. After some waiting states, the proper type of
forecast is selected. The forecast is updated every two seconds, when the main state
is executed again starting from the wait states. This is a typical structure of a SMD
for this kind of application.

Some typical features of this type of diagram are herein listed:

• The identification of a main state, containing the different algorithms, and a
“switch-off” starting state, from which it starts, when required, and where the
system returns, after reaching a typical “end”;

• the definition of dedicated “wait” states, very useful to initialize some variables
or to enter the main state;

• the updating strategy, concerning the time required to update the whole diagram,
depending on the part which is computed, to avoid the freezing of data, as it
happens when the signal is unable to exit a state, during the execution.

Those three main issues can be recognized in the several SMDs here proposed.
Figure 6.20, for instance, shows the SMD for the ice detection.

Fig. 6.20 SMD for the ice detection use case
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As it is shown, a similar structure is maintained. Four main groups of states are
here identified, within the main one. They are executed in parallel, since the
detection of ice level is performed simultaneously on four zones of the aircraft.

In Fig. 6.21 the SMD for the ice removing use case is shown.
In this SMD is relevant that some states may be characterized by some other

lower level SMDs, because the representation concerns no longer a static behavior,
but a dynamic response of the system. The higher-level diagram presents a typical
structure, as it was previously mentioned. However, since manual and auto modes
are quite different, some low level SMDs have been built, to define them.

They are shown in Figs. 6.22 and 6.23 for the Manual and Auto mode,
respectively.

The first diagram shows four main groups of states. They can be executed in
parallel, depending on the input sent by the pilot. The second SMD performs a sort
of loop, which is based on a suitable timing, i.e. a specific time interval between
subsequent activations is automatically chosen, as a reaction to the current ice
severity (CT, cycle time).

The control SMD is even similar to the previous one, as Fig. 6.24 shows.
If one observes the low level SMD, some differences between manual and auto

modes controls are detected. The manual control is actuated by an input of the pilot,
while the auto control is based on the measured data of ice level and icing severity,
being compared to some guard values, to select the proper state to be reached by the

Fig. 6.21 Main SMD for the ice removing use case
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system. The target state is responsible of the selection of the cycle time, to be
applied to regulate the strength of ice removing (Figs. 6.25, 6.26).

As for the AD, the monitor SMD is the most complex one, since it shall include
the whole set of messages and inputs, provided by the pilot. The output related to

Fig. 6.22 SMD representing the Manual Mode state of the ice removing high level diagram

Fig. 6.23 SMD representing
the Auto Mode state of the ice
removing high level diagram
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ice severity, forecast and system modes and status shall be provided as well.
The SMD is therefore full of elements. Some details are described in Figs. 6.27 and
6.28, separately.

Three main states can be recognized. The “Off” state simply shows the deacti-
vation of the system. The “Standby” state is responsible to show the ice level and
the forecast, as previously described by a dedicated AD. The “On” state contains

Fig. 6.24 Main SMD for the control use case

Fig. 6.25 SMD representing
the Manual Mode state of the
control high level diagram
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Fig. 6.26 SMD representing the Auto Mode state of the control high level diagram

Fig. 6.27 Detail concerning the “Off” and “Standby” states of the SMD related to system
monitoring
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the different transitions to show the ice level, forecast and all information related to
system control (system status, type of cycle, mode etc.…). Those states are
involved as the guard conditions associated to transitions define. Some timing
triggers are used for updating.

Some elements coming from other SMDs are even replicated, if it is necessary,
but, generally, the data coming from other diagrams are used to compute the output
requested, as it is appreciated for the main states of Fig. 6.28.

As it appears now clearer, different SMDs shall be associated to each other,
through an effective representation of data architecture, to be simulated together.
This is a preliminary integration of the system and is done by defining an Internal
Block Diagram, shown in Fig. 6.29. The IBD is composed by the Parts which are
expression of the use cases in this specific context. Each part is an instantiation of a
class, and is typical of the SysML language, as previously described. The parts
show interfaces and ports required to expose data to other parts or instances. These
send or receive some variables (continuous data) and messages (discrete data) to
feed the SMDs. As the small icon upon the blocks indicates, the SMDs include the
dynamic behavior of the parts here defined. Therefore, the IBD provides an enri-
ched information, and its representation becomes powerful and now complete, in
terms of the Functional Architecture of the IPS.

Once that this kind of instantiation is complete, it is possible to perform the
simulation. For this application, a dedicated panel diagram was built, to provide a
user interface to the SMDs. The panel is shown in Fig. 6.30.

On the left side, the main inputs are included and, notably, the main switch
which regulates the “on—off—standby” modes, the selector of auto and manual
modes, and the indicator of de-icing intensity. In the middle, an overview of the
aircraft with the indication of active zones is depicted, and, at the bottom, the
control panel for manual activation of zones is provided. On the right side, the main
environmental parameters can be set up (ice level and temperature). The panel is
completed by a small selector of the prediction type (on the right) and the visual-
ization of the actual thickness of ice (bottom right). Figure 6.31 shows an example
of simulation.

It can be appreciated that the system is running in auto mode. The ice level on
the wing (displayed through the indicators on the right) is initially considered to be
low, if compared to levels defined by requirements, and the low de-icing cycle is
used. However, since the temperature belongs the range suitable for icing and the
ice is accumulating on some aircraft zones, the forecast at the right corner of the
panel warns that a major icing condition occurs. This message is displayed
according to the forecast strategy implemented, being based on both environmental
conditions and ice measurements (push button “Both”). This motivates why the
wing surfaces are active in the picture, as it is highlighted by a yellow led.

In addition, the user is interested to appreciate inside the SMD where the sim-
ulation is currently working, and the states active, step by step during the simu-
lation. This is possible, since the animation visualizes by different colors the blocks
involved, and allows validating the model and verifying whether a right transition
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between states is predicted. Figure 6.32 shows the diagram animation for the sit-
uation depicted in Fig. 6.31.

Active states are shown in magenta. The focus is upon the “On” state, being the
system working. For what concerns the ice measurement, a “minor” state is
highlighted, whilst data are flowing, as well as a “major” state is highlighted for the
forecast. The system is running in auto mode, set at low de-icing cycle. The wing
de-icing is presently active, as highlighted in the upper right state of the “auto”
sequence, whilst the commands on the bottom right, dedicated to manual control are
disabled.

Fig. 6.30 Panel diagram used within the functional analysis for the IPS case study

Fig. 6.31 Example of Panel diagram animation (functional simulation)
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6.6.3 Comparison Between Use Case and Black-Box Based
Approaches

Several scenarios can be simulated through that visualization. It is also a good
assessment to verify that the model has been defined correctly. This activity
completes the modeling of the Functional Analysis, when the whole set of behavior
diagrams is used for the instantiation of operations. This approach does not allow a
clear representation of the functional breakdown structure, being more focused on
the system behavior and on its formal representation, through the simulation. It is
effective in terms of results, but it may be difficult applying this approach to fields
where functional trees and best practices are commonly used, or some regulation or
connection with other domains drives the design activity.

The aerospace engineering is a typical field, where design practices are today
fairly assessed, from the point of view of regulations and workflows, inside the
companies. The last are expressively adapted to fulfil the requirements of technical
standards, about the quality control for safety critical systems. This situation is a
consequence of the document based approaches, used in the past to connect dif-
ferent engineering domains and several departments, involved into a product
development process based on a waterfall methodology. In that case, the functional
tree, or functional breakdown of the system, is used for many purposes. It might be
remarked that together with the SE a very important branch of engineering focused
on system functions is the safety engineering. The safety assessment for safety
critical systems usually starts from the definition of failure conditions. They affect
the nominal behavior of the system and cause the loss of some functionalities. This
investigation is performed through the Functional Hazard Assessment or FHA,
which is based on the system functions to explore its dysfunctional behavior (see
Chap. 10). This motivates the relevance of the functional tree within the Functional
Analysis. Therefore, the two approaches are herein compared, in the industrial test
case.

The black-box based approach to the Functional Analysis starts from the defi-
nition of a proper functional tree, implemented through a Block Definition Diagram
(BDD). It should be capable of identifying the functions as main blocks, to be then
characterized by a proper behavior. In this way, a clearer understanding of the
functional levels is provided, without losing the benefits of the MBSE design.
The BDD is shown in Fig. 6.33.

As it can be appreciated, this representation is quite intuitive, each block has a
precise hierarchical relationship with the father/son blocks. They can summarize
many types of data, which are related to the analysis performed. For instance, are
evident the information about operations associated to different functions, the al-
location to logical/physical components and the links to requirements. In this case,
the upper part of the functional tree is just shown. Main functions are here described
by some SysML blocks, where properties are highlighted, such as operations and
allocations from logical elements. Each block can be further characterized through
some SMDs, to specify better the system behavior and to include some operations,
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Fig. 6.33 Detail of the BDD containing the functional tree of the IPS
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associated to the block within a dedicated flow of states. Other behavior diagrams
can be used like in the approach above described.

The allocation process is here crucial as well as the design data flows are for the
implemented solutions. The black-box approach considerably relies on the SysML
features, for traceability, to perform the consistency and coverage analyses. The first
analysis allows checking that every processed data is traced upward to requirements
and downward to logical components, without blank spots, whilst the coverage
assures that to each logical component a design element is associated. The coverage
analysis highlights the instances impacted by a specific function or operation,
contained within the functional tree.

The consistency analysis usually refers to some specific representation, as
matrices or tables. They can be easily used to check whether any data is missing or
has been forgotten, during the design activity. A detail of a matrix view relating
functions and requirements is shown in Fig. 6.34.

Function “To allow system control” has no requirement associated and a cor-
rective measure shall be applied to avoid a loss of data, for the next phase. In the
same way, some requirements are not assigned to functions.

This is the so-called upward consistency check, from functions to requirements.
However, if the downward direction is considered, from functions to implemen-
tation, it is possible to perform the same check to continue this sort of chain of data,
as it will be shown in next Chapters, as the Logical and Physical Analyses will be
described.

Concerning the coverage analysis, a similar implementation is performed.
Nevertheless, the coverage analysis is wider, in terms of elements checked, and
involves several instances having different characteristics and heterogeneous
granularity (functions, requirements, operations, attributes, interfaces etc.…). This
is the motivation leading the MBSE tools saving all the relationships occurring
among the SysML elements, to make available different views as the one shown in
Fig. 6.35.

Many links are shown in the Requirements Diagram. This representation
includes the SysML elements associated to the function “To allow system control”,
from high level requirements up to the level described in this section (Functional
Analysis), together with some details of the Operational Analysis.

Fig. 6.34 Consistency check for requirements in the functional analysis through a matrix view
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It looks interesting to think about the flow of tasks through which the system is
designed. It starts from a high-level requirement, that specifies the need for a
modulation of de-icing intensity, depending on ice level and ends with the defi-
nition of the function, and the derived requirement at lower level, passing through
some modeling activities, describing the system behavior.

Some MBSE tools already available on the market include some specific tool-
boxes, which enable those representations. Figure 6.36 shows an impact analysis
for the requirement related to system control capabilities, which identify several
elements to be associated.

When the deployment of an enlarged toolchain, including tools for different kind
of analyses, is considered, the consistency and coverage analyses can be enlarged to
verify the correctness of data. The consistency of data between functional tree and
FHA is an example. This task could be more difficult when a use case based
approach is applied, as long as defining a unique functional tree is hard. By con-
verse, some functionalities of the system can be represented in a federated way, in
different diagrams, to follow the use-case-based approach.

The use case based approach allows characterizing better the system behavior
and exploits all the SysML diagrams, through a specific sequence of steps.
Therefore, it is effective in identifying a lack of consistency between phases, while

Fig. 6.35 Visualization of an example of coverage analysis through SysML diagram
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the black-box approach focuses the user attention on the correctness of data, as long
as each design phase is deployed.

Particularly, requirements are derived in different ways, depending on the ap-
proach used to define the functional architecture of system. They are derived at high
level, as in the Operational Analysis, through both visual and summary methods in
the use case based method. The granularity of operations is higher than that of
functions.

The second approach is based on breakdowns. Therefore, diagrams can be easily
structured for requirements derivation. Typically, the BDD or requirements dia-
grams are used to connect the model elements to requirements, which are then
updated within the specification.

In both cases, dependencies are established between requirements and model
elements. Considering that the system characterization is still at functional level,
some soft links should be preferred. The “Trace” dependencies are chosen, for this
example, to connect functions and operations to requirements, to start a preliminary
consistency analysis together with an initial impact analysis (coverage) without
stressing the relationships (for example with “satisfaction” or “verification”
dependencies). This might appear as a just formal difference, but content and
meaning of dependencies have an impact on the model-based design and on
practical features exploited by tools to enable some consistency checks.

Fig. 6.36 Visualization of the coverage analysis through the Rhapsody® Gateway®
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Once the functional architecture of the system has been established, is crucial
investigating how the specification is modified. In addition, the actual coverage
implemented between the IBM Rhapsody® and the IBM DOORS® should be
checked. An overview of the IBM Rhapsody® Gateway® is shown in Fig. 6.37.

The level of requirements coverage is expressed by a bar on the left side. In this
case, the coverage refers to trace links, between requirements and other objects,
since only soft dependencies have been used. The percentage of coverage should be
100% at the end of each phase, and all requirements defined shall be covered by a
design element. No isolated design element should be present, otherwise they might
be not required. The coverage analysis can be summarized by some views provided
by the Gateway®, as shown in Fig. 6.38.

Fig. 6.37 Analysis of coverage quality through the IBM Rhapsody® Gateway® in the functional
analysis

Fig. 6.38 Impact of requirements on system functions as shown within the IBM Rhapsody®

Gateway®
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This action is generally applicable to both the approaches above described, as far
as the use of dependencies is concerned. The specification in DOORS® is then
updated, through the connection with the Gateway®. New requirements are added
to the formal module containing the specification. The link module can be updated
as well within DOORS®, if the connection among requirements is a critical issue.

6.7 Results and Final Remarks About the Functional
Analysis

The Functional Analysis is a crucial phase of the MBSE approach. It is used to
define the functional architecture of the system, being the synthesis of functional
behavior and breakdown. Depending on the case study and engineering domain or
practice, this phase can be customized and tailored to focus on some specific
aspects of the functional architecture. Different levels of priority may be assigned to
the definition of behavior and breakdown, and some approaches can be applied.
Some common issues are identified for a large variety of application of the func-
tional analysis, such as its use-case-based characteristics and its deployment as
black-box process.

Test cases, here proposed, showed the most important features of the modelling
activity, dealing with behavior and structure diagram of the SysML. They proved
the effectiveness of these tools, in different fields. Several levels of complexity have
been shown. A high flexibility of the proposed approaches could be even appre-
ciated, in terms of depth of analysis.

Some main results can be here summarized.

• Operational scenarios and interfaces with actors have been translated into a
realistic behavior of the system, in terms of functionalities. It was possible to
define several diagrams to specify the system behavior, in each scenario.

• Interfaces with actors have been validated through the diagram animation, by
means of some dedicated diagrams, which allows testing the system behavior.

• Traceability assures the consistency and coverage checks, both upward and
downward, between phases of the design process.

• Requirements have been updated and the specification reached a good level of
maturity.

The Functional Analysis is break point within the design process. It is the last
phase in which the approach is performed through some black-box views.
Therefore, in following phases, the allocation process will assume the most
important relevance, while the description of behavior issues will be progressively
less important. Constructional and physical aspects will have a growing importance.
So far, it shall be relevant stating the strategy used to manage the allocation process,
and the degree of customization allowed.
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Another crucial remark concerns the comparison between functional and
non-functional behaviors of the system. Actually, in the test cases, functional
requirements will not significantly change. In some complex applications, when
some iterations of the design process are performed and the dysfunctional behavior
is considered, the requirements specification might be significantly modified.

In next chapters, the Logical and Physical Analyses will be presented and the
practical derivation of the PBS will be proposed. For both examples, some main
features of the modeling activities concerning allocation and traceability will be
described. The results of the Functional Analysis will be used to propose a logical
breakdown. It shall be then analyzed in terms of non-functional issues, through a
numerical simulation and even other kinds of assessment. Some examples of PBS
formulation will be provided as well as some implementation alternatives, currently
proposed within the frame of the MBSE.
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Chapter 7
Logical Analysis

Abstract Before that a real architecture of system could be defined, by selecting
some suitable components, available on the market, it is suggested to describe the
Logical architecture of the system, to investigate the most promising solutions
available in terms of exploitable technology. This leads to perform a Logical
Analysis, as is herein described. Relations between Functional and Logical
Analyses are investigated. Examples are exploited to show some properties of this
analysis. At the end of chapter, the main items of the Logical Analysis are resumed.

7.1 Meaning of the Logical Analysis

After the Functional Analysis, the functional architecture of the system is defined.
A real implementation of this architecture is not yet specified, at this level, since the
analysis is just performed through a solution-independent approach, i.e. the system
elements are described by the functions they must provide, but the real components
are not yet included. The purpose of the Logical Analysis is proposing a preliminary
system architecture to support the functional behavior. It is a specific design phase,
and is focused on the allocation of the functional architecture on one or more
system candidates, which should be compliant with the functional requirements and
comparable among each other, through a selection of design parameters. This is an
intermediate step between the pure functional analysis and the physical one, when
the non-functional requirements are assessed and the real performance of the system
is measured.

The Logical Analysis connects the functional modeling with the modeling and
simulation activity, which usually implements some numerical models, to predict
the dynamic behavior of the system. A candidate solution for building the system is
found and is organized to be compliant with the functional architecture. It is used to
propose a set of possible alternatives, which are identified through the allocation
process of functions on some available technical solutions, including subsystems
and components, being just identified at high level. In this way, all the candidates
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will satisfy the functional requirements and a technical assessment will be used to
evaluate the non-functional features, concerning the items constituting the system.

As it happens for the Functional Analysis, there is never a unique interpretation
for the Logical Analysis. This phase is performed after the functional modeling
activity, to propose some system candidates, for the trade-off analysis, which
usually follows. Therefore, in this step the logical definition of the system is
assessed, while the numerical simulation and the technical assessment are included
in following steps of the product development.

It should be remarked that the logical architecture of the system is always a
design issue, but the approaches proposed in the literature to assess it, are quite
different. One of the most popular is organizing three phases, as is proposed in this
handbook, including the operational, functional and logical analyses. However, the
definition of logical and physical architecture, respectively, is not unique.

Sometimes, the logical architecture is described as the whole set of activities
used to perform the operational and functional analysis, while the physical archi-
tecture is related to the implementation and allocation. In other technical domains,
the logical analysis is an intermediate layer, between the functional and physical
analysis. It is considered always as the final phase of the functional modeling.
Furthermore, the term logical analysis may be used to describe the allocation
process from the functional analysis to system candidates, while the physical
analysis is simply interpreted as the numerical simulation.

To be straight, the definition of system candidates includes system, subsystems
and components not yet fully characterized. At logical level, for instance, a specific
brand for a component is never cited or some detail like the part number is never
included. The term “logical” itself is used to specify that the proposed architecture
does not comply with a product breakdown structure. Therefore, a logical break-
down structure precedes the product breakdown, along the development.

The SysML language offers different approaches to perform the Logical
Analysis. Despite the number of slightly different interpretations, the most impor-
tant issue is the goal of allocating the functional architecture, of identifying a set of
candidate solutions, for the trade–off, and to prepare a structure to implement a
numerical simulation of the system performance. In this handbook, the Logical
Analysis is interpreted simply as the last phase of functional modeling, aimed at
allocating the functions to the system logical blocks, composing its architecture.
Logical blocks will be transformed into physical components, through the Physical
Analysis, intended as a numerical simulation campaign.

7.2 Handoff Between Functional and Logical Analysis

All the relevant information used to map the functional architecture of the system
shall be imported into a suitable engineering solution, when some candidates will be
generated. The functional elements, like actions and operations, shall be allocated on
the system elements of the physical architecture. This target is relevant to understand
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how the product development switches from the functional to the logical analysis.
Two details must be considered. A first one consists of the solution independent
nature of those two phases. The functional analysis is a “black-box” where the
system behavior is defined only through the functions, but without referring to any
element able to perform any action or operation. The logical analysis is expressively
focused on the assignment, namely allocation, of the functions to some entities able
to perform both. The Logical Analysis looks like a “white box”, since the system is
explored in its parts, at least up to a defined level of depth.

A second important aspect concerns the management of the use cases during the
synthesis of the logical architecture. They shall be able to support all the operational
scenarios. Independently on the method applied and the tool used, the allocation
process collects the data for the defined use cases and is performed for each one
separately, since the traceability is assured by the model based approach. At the end,
the system elements will be allocated to functional elements defined in each use case
and operational scenario. This allows a complete coverage of the handoff process.

The characteristic independency of the solution and the use case oriented process
have a direct impact on the implementation strategy of the Logical Analysis. Most
of the diagrams presented in Chap. 6 are used also for the Logical Analysis. A use
case based approach is applied, but a strong “white box” connotation is introduced.
Both the behavioral and structural diagrams are organized to actively include the
system elements within the definition of actions, operations, messages and data
network, thus promoting a first logical implementation. This usually involves the
diagrams already defined within the Functional Analysis, with some suitable
modifications. A global perspective helps to define the system architecture, in terms
of hierarchy and data network. It allows comparing different solutions and to pass
the related information to other domains, to perform further analyses.

The definition of solution candidates is an iterative process, mainly related to the
allocation. When a set of alternatives is considered, the allocation might be dif-
ferent. Some system elements may meet the functional architecture identified in
many ways, this property leads to several possible layouts. To select the best
candidate and eventually modify the system architecture, a set of parameters is
used, mainly characterizing the non-functional issues of the system design. They
are collected within a global representation of the system, to enrich as much as
possible its description and to identify some performance indicators, to be measured
during the simulation activity.

7.3 Implementation of the Logical Analysis Through
the SysML

The Logical Analysis involves many diagrams used within the Functional Analysis,
but it is specifically focused on the integration of an architecture within the system
boundaries. Each action, operation or message is referred to a specific logical
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element, and the whole architecture represents an alternative solution, to be con-
sidered during the trade–off activity. Some behavioral diagrams, as the activity,
sequence and state machine diagrams, include some partitions, which represent the
system components and pats. The structure diagrams, for instance, include some
data network and the hierarchy of system elements, with reference to the allocation
provided by the behavior diagrams. The diagrams used in the Logical Analysis are
basically the same of the Functional Analysis. Often the view exploited to represent
the system is different.

The Activity Diagram is the first SysML formalism applied to develop the
Logical Analysis. It describes a first partition of actions, by allocating them on some
physical elements. Actions and related operations, together with the control flow,
are reorganized to be assigned to some specific partitions, in this representation
which is a ‘white box’, but remaining consistent with the ‘black box’ of the
Functional Analysis (Fig. 6.1). In case of the Activity Diagram, these partitions are
typically shown as swimlanes (Fig. 7.1).

The Sequence Diagrams, are then used. They are typically populated by many
lifelines, related to the system elements. The messages among them and the envi-
ronment (i.e. the external actors) are reorganized and, eventually, updated. Since the
analysis is use case based, those diagrams are always related to some specific
operational scenarios. The use of a “white box” version of the Sequence Diagrams
leads inevitably to the definition of a more detailed sequence of messages, with a
new input/output structure for the lifelines (Fig. 7.2).

Fig. 7.1 Example of activity diagram with swimlanes
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This detail has an important impact on the State Machine Diagrams and even on
the Internal Block Diagrams. Those two diagrams are now considerably connected
to each other. Since the structure of the State Machine becomes federated, to
characterize the system elements (Fig. 7.3) and a more detailed data network, based
on the messages circulating among the parts, is required to completely understand
the system behavior. Each new element is characterized by a specific behavior,
which can be implemented through a dedicated state machine diagram. All these
diagrams are integrated with the main one, representing the use case.

The network is implemented by a reviewed version of the Internal Block
Diagram. Ports, connectors and interfaces among the parts are reorganized to meet
the information provided by the behavior diagram, and new Internal Block
Diagrams may be included. Several IBD (Fig. 7.4) are drawn at this phase, to
formalize the data exchanged among the blocks and to hypothesize a possible
interface architecture. This step is also important to prepare the tasks performed
within Physical Analysis, through the numerical simulations.

Finally, the logical architecture can be defined within the Block Definition
Diagram (Fig. 7.5), which contains the breakdown of system elements. This rep-
resentation includes a list of blocks and can be used to formalize the allocations and

Fig. 7.2 Example of sequence diagram used within the Logical Analysis
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the different dependencies, useful to tailor the Functional Analysis onto the Logical
Analysis. Matrices and tables behave as a summary of the handoff and as coverage
report.

Moreover, different BDDs can represent the proposed logical architectures, to
evaluate the identified alternative solutions.

Fig. 7.3 Example of statechart for a logical component

Fig. 7.4 Example of Internal Block Diagram for the Logical Analysis
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7.4 Requirements Satisfaction and Architecture
Allocation

The requirements and the Logical Analysis are connected to couple the preliminary
solutions for building the system to the SRS. This process is performed as it
happens in the Functional Analysis, but a stronger connection is instantiated in
terms of traceability. The so–called satisfaction is used to link the requirements to
the system logical blocks. A complete map among requirements, functions and
system elements is built up, together with a full verification of the compliancy of
the proposed alternative solutions to the functional architecture. The requirements
coverage can be verified through the Model Based relations defined during the
functional modeling. They create an effective collection of links among the
requirements, functional and logical analyses. An expected outcome consists in a
complete prediction of the mutual impact of the system elements on their design.
A crucial task is the verification of the coherence of the system architecture with the
functional one. The compliance with the Functional Analysis must be guaranteed,
to start a trade–off between the proposed solutions. The allocation is used to map
the functional architecture to the logical one, been directly derived. Even other
types of links are established among functional and logical entities. The whole set
of properties regarding the traceability is here part of the model. This is the main

Fig. 7.5 Example of Block Definition Diagram for a logical decomposition
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benefit of the Model Based approach, if it is compared to the Document Based one.
The information can be actively navigated and the impact analysis is effectively
performed. The presence of two types of architectures, being focused on the system
functions and elements, respectively, is helpful in detecting the flow of information
leading the requirements from an early elicitation to the final allocation.

7.5 Towards the Next Phase

Independently on the approach applied through the Functional Analysis, being
either behavior–based or breakdown–based, the Logical Analysis is conceived to
propose one or more system architecture as a tentative solution to the problem of
designing the new system. The main result expected concerns the structure of the
system, with its hierarchical levels, a set of new allocation links and a stronger
connection with the SRS. Some new versions of the SysML behavior diagrams,
looking as a “white box”, are therefore expected, together with some IBD and
BDD, which might offer a logical view of the system. To set up the Physical
Analysis and related numerical models, some other outputs are required.

The logical system layout shall be characterized by some parameters, namely
attributes, to be used to define some performance indicators. Those are computed to
perform the selection of the best solution, among those proposed. The attributes are
referred to some high-level assumptions about the system behavior, such as the
power consumption or other Key Performance Indicators (KPI), to be verified by
means of the Physical Analysis. A proper allocation of non-functional requirements
is therefore formulated at the end of the Logical Analysis, to be further developed in
the following Physical one.

For the transition to the Physical Analysis, the model compatibility is very
important, i.e. to make easier the modelling process and reduce the workload
associated, the data contained in the SysML Structure Diagrams must be compatible
with those defined within the numerical simulation model. This turns out into a
seamless translation of data between the functional and numerical models. The data
network implemented through an Internal Block Diagram, in terms of flows,
variables and connections, for instance, should be as close as possible to the
structure of the dynamic models simulated in the Physical Analysis. Moreover, data
should be automatically transferred from the IBD to the dynamic model, to avoid
replication. So far, the Logical Analysis is often seen as a bridge between the
functional and physical worlds. Nevertheless, to be effective, it needs to be robustly
consistent, in terms of contents (allocation process, link between functional and
logical analysis), and formalisms. This specific item shall be described in following
sections, aimed at providing an overview of the application of this methodology to
the test cases.
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7.6 Implementation and System Logical Architecture

7.6.1 Didactic Test Case

The operational and functional analyses defined the system mission, including the
interaction with the environment, at least at higher level, and the functional
behavior of the system, described as an ideal behavior. Requirements have been
derived and updated, considering the results of the analysis performed. A complete
overview about how the system shall behave and what it shall do is now available.

To propose a feasible system layout, the Logical Analysis is run, to identify
some system components which may match the modeled functional architecture
and are able to perform the required system functions.

As a first step of the Logical Analysis, the subsystems and components to be
integrated into the real system are looked for. The Product Breakdown Structure
(PBS) of the system is modeled, through a BDD defining the system hierarchical
structure and including all its components.

As Fig. 7.6 shows, the PBS of the laying head system is composed by three main
subsystems, according to the Functional Breakdown Structure, depicted in Fig. 6.7,
which shall enable the system to rotate, to measure some parameters, and to control
the rotor unbalance and its dynamic stability.

The laying head system architecture should include the following components:

• the rotor subsystem—made by motor, rotor, stator, nozzle, and bearings;
• the sensors subsystem—including position sensors, package sensors, encoder,

rod detector, and thermocouples;
• the ECU subsystem—is the Electronic Control Unit, with a power amplifier.

Fig. 7.6 Logical architecture of the Laying Head System
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Like in the FBS, the Product Breakdown Structure is sketched by a BDD where
the system is the main block and its blocks, here the “Rotor”, “Sensors”, and
“ECU”, are subsystems, made by the following components:

• Rotor: nozzle, bearings, stator, motor, and rotor.
• Sensors: position sensor, package sensor, encoder, thermocouple, and rod

detector.
• ECU: controller, power amplifier.

Since the Logical Breakdown represents the allocation of the FBS, each com-
ponent defined in the PBS must accomplish at least one of the system functions
described within the FBS. The system functions need to be allocated to the system
design components, using the allocation link “Allocate to” and “Allocate from”.

Figure 7.7 shows that all the function blocks are allocated to a logical subsys-
tem. In particular it can be seen that:

• The Rotor is required to perform the rotating and shaping functions.
• The Sensors are necessary for the measuring functions.
• The ECU is required to perform the control, monitoring and signaling functions.

Fig. 7.7 Allocation of functional blocks to logical blocks

202 7 Logical Analysis



www.manaraa.com

Another important issue of the Logical Analysis is the definition of relations
between the components, in terms of data exchanged. Thus, like it has been done in
the Functional Analysis, some Internal Block Diagrams are used to model the
interactions between the identified components. In Fig. 7.8 the internal structure of
the laying head system is modeled through ports and connectors, which even
express which data they exchange each other.

The requirements traceability is relevant target of the Logical Analysis. It con-
sists in verifying that the whole set of functional and operational requirements is
allocated on some suitable component, being capable of completely satisfying
them.

In Fig. 7.9 an excerpt of a requirement diagram represents the dependency
between requirements and logical components, defined by the logical analysis. The
dependency is here designated with the notation �satisfy�, which indicates
that each element satisfies a specific requirement.

As it can be appreciated, in this example the FBS is simply allocated to the PBS.
Basically, functions are depicted at higher level through a BDD, then components
which provide those functions are described through a IBD. Nevertheless, the
rationale is followed as it was above introduced. Functions are preliminary defined
and depicted, components are then described, in terms of logical blocks performing
a defined activity. The PBS shall be refined and updated to include some selected

Fig. 7.8 Internal Block Diagram of the Laying Head system
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physical components, as the Physical Analysis shall be completed. The diagram is
the same, but contents will be better specified. From this point of view, it might be
assumed to deserve as a Logical Breakdown Structure right now, and then really as
a PBS, when completed.

7.6.2 Industrial Test Case

The Functional Analysis allowed describing in detail the functional architecture of
the IPS system, in terms of breakdown of capabilities and behavior. The focus shall
move now on which component is responsible to accomplish the defined functions.
A preliminary decomposition of logical components, to be subjected to an
assignment of system capabilities through allocation, is made. Looking at the
process followed for the IPS, the results obtained from the Functional Analysis
provided some important inputs.

• The exploitation of the main behavior diagrams allowed defining the operations
of the system (behavior-based approach). Alternatively, a functional tree has
been implemented to consider the whole set of system functionalities
(breakdown-based approach).

• Requirements have been traced on functional elements, so that the traceability
links are now available to drive the formal satisfaction in logical analysis.

The Logical Analysis is based on two main processes, the allocation of functions
on logical components and the satisfaction (traceability) of requirements. To reach
these goals, four main steps are implemented.

Allocation of operations/functions on logical components. This is the most
important task of the analysis, which consists in formulating some possible system

Fig. 7.9 Formal requirements satisfaction for the Laying Head system within a Requirements
Diagram
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alternatives, to match the required functionalities. Depending on the way the
Functional Analysis has been conducted, the allocation may use a “white box”
version of the behavior diagrams previously developed. In this case, the allocation
of operations is performed directly on the diagrams, using the features of the
SysML formalism. Alternatively, it may rely directly on a logical breakdown of
components. The first approach is required when a behavior-based functional
analysis is considered, whilst the second one is applicable to the breakdown-based
approach.

Definition of the system logical architecture. At the end of the Logical
Analysis, a tangible architecture of the system shall be defined. This means that, for
systems designed through a behavior-based Functional Analysis, a further step shall
be performed to synthetize a breakdown of the system. For a breakdown-based
Functional Analysis, it is already available. The logical architecture shall include
both a hierarchical decomposition of elements, being usually sketched through a
BDD, and a preliminary communication network among them, which can be close
to a possible implementation and is, generally, described by one or more IBD.

Requirements satisfaction. Logical elements shall be linked to the traceability
process, through the satisfaction dependencies. This activity has an impact on the
functional requirements of the SRS and allows closing the loop of requirements
coverage as well. Non-functional requirements can be defined to enrich the SRS,
but their satisfaction will be assessed during the Physical Analysis. At the end of the
Logical Analysis, it shall be possible to navigate the traceability links, from the use
cases to the logical blocks, without blank spots.

Definition of system alternative solutions and trade-off study. Several alter-
native solutions can be proposed within the Logical Analysis to meet the functional
architecture. In principle, different kinds of system may be compliant with the SRS.
A trade–off is therefore required to choose the best option. This is usually done
through the formalisms of the SysML, that allows defining the candidates and the
scoring process, in a standard way.

Several system architectures are usally proposed. For each one, many Key
Performance Indicators (KPI) are introduced, using some attributes. The KPI are
expression of non-functional aspects related to the system or to its operation. These
attributes will assume some hypothesized values, to be then verified, during the
physical analysis. However, their introduction in the Logical Analysis suggests that
some of candidates can be neglected.

It is worth noticing that, even if the breakdown-based functional analysis allows
avoiding an additional step in the Logical Analysis, the behavior-based approach is
easier, since the consistency check on the completeness of information is faster and
usually embedded within the MBSE software. For the breakdown-based approach,
this shall be performed manually, with some additional time and efforts.

For the IPS, the behavior-based approach is chosen as a starting point for the
Logical Analysis, since it allows covering all the four steps just described.
Moreover, two system alternatives have been proposed to show the scoring process
within a trade study.
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An interesting way to show the allocation through the “white box” behavior
diagrams is relying on the activity diagrams. They define some specific formalisms,
namely swimlanes, which represent a sort of partition of the diagram, that can be
used to indicate the components responsible for each action. However, since the
activity diagram is the first behavior diagram developed within the approach herein
described, the operations were not yet present, when the graph was defined at the
beginning. Therefore, a preliminary synchronization and updating is required to
assure that the actions described within the diagram are representative of the
operations depicted by the related sequence diagrams. Apart from this aspect, the
implementation is quite straightforward. It is simple to be understood, although
the diagram is usually affected by the introduction of the partitions. It looks like
cluttered, although the contents are the same. Moreover, this approach allows
maintaining the use case based approach up to the allocation process. This is very
useful to look at small parts of system behavior, reducing the risk of data loss and
misunderstandings. The whole picture can be then provided, as soon as the system
architecture is defined and requirements are linked to the logical blocks.

The “white box” activity diagrams are herein shown for the use cases considered
for the IPS case study. The first one is referred to the ice prediction use case
(Fig. 7.10). It is a modified version of the diagram used within the Functional
Analysis, and differences concern the introduction of the swimlanes. Particularly,
the main flow is allocated to the de–icing control unit, which is responsible to
receive data related to icing condition, to elaborate them and to compute the
forecast. Information are provided to the crew, by means of a dedicated visual
indicator, that shall be able to distinguish between major and minor icing condi-
tions. Eventually, the main switch is responsible to turn on and off the system.

For the diagram in Fig. 7.10, the type of IPS is not yet specified. The system
components where the operations are allocated simply represent a generic equip-
ment, being associable to many technologies and categories of products. The same
happens for the ice detection use case, shown in Fig. 7.11. In this case, the mea-
surement of ice accretion is made by several sensors, applied to different surfaces of
the aircraft. The control unit receives the measures performed. The components
appearing more than once, within different diagrams, refer always to the same item.
This is a consequence of the use case based approach, which leads to have that
different issues of the system behavior are treated separately, during the Functional
Analysis. During the allocation to logical components the system structure is dis-
closed. Therefore, it might happen that the same component performs similar or
even different operations, in several working conditions.

The system nature is dealt with the allocation of the ice removal use case
operations. Two candidates of IPS have been selected. An electro-thermal system
and a pneumatic one, based on pressurized boots. Figure 7.12 shows a portion of
the diagram, to describe the allocation of the electro–thermal solution. The selection
of the surfaces to be heated is allocated on a proper selector, either automatic or
manual. The power distribution is performed by some feeding lines. The first one is
the main feeding line, while the second one is specific, for each zone heated. Some
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Fig. 7.10 Activity Diagram for the Ice prediction use case with swimlanes

Fig. 7.11 AD for the ice detection use case with swimlanes
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heaters provide the thermal energy to the external surface of the selected zone to
melt the ice.

Figure 7.13 shows a similar allocation for the second technological solution,
based on the pneumatic system. The structure is the same, while the distribution
lines, consists in a pneumatic feeding. The actuators are inflatable boots, bonded on
the protected surfaces, which break the ice through a cyclic inflation and deflation.

This sequence of actions is repeated for each protected surface of the aircraft.
Therefore, a feeding line and an actuator system (either electric resistor or boot) are
foreseen for the different zones (here only wing and horizontal stabilzers are
shown).

Fig. 7.12 AD for the ice removal use case with swimlanes (electro-thermal system)

Fig. 7.13 AD for the ice removal use case with swimlanes (pneumatic system)
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The system control in both the solutions is performed through some similar
operations. This situation makes the related use case poorly sensitive to the tech-
nology applied. Figure 7.14 shows a portion of the AD for the proposed use case.
The control action is implemented through a dedicated mode selector, which
determines the type of operation (either manual or automatic), and a cycle selector,
which sets the intensity of the de-icing operation. The control unit is responsible to
evaluate the ice accretion severity. In case of automatic mode, it tunes the de-icing
process accordingly.

The monitor use case has a more complex AD. Multiple information must be
provided to the flight deck. It is difficult to represent the diagram with the swimlanes,
without incurring in some reading problems. Nevertheless, the monitoring operation
looks like the actuation of both the electro-thermal and pneumatic systems. The main
switch controls the operation of panels and indicators. A new feature is allocated to
this component, notably, the stand–by mode. In this mode, the de-icing process is
switched off, but the ice measurements and forecast are still performed. The mode
selector can be used to choose either the manual or automatic mode, but is disabled
in case of system off signal. Aural and visual indicators are provided for the ice level
and forecast warnings, as far as forecast is concerned, only a visual warning is
implemented. Considering the manual mode, a zone selector is also introduced with

Fig. 7.14 AD for the control use case with swimlanes
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the dedicated panel. Cycle selector is even present and the control unit is always
computing the data received by the different components.

Some items typical of the control use case are here included, since the panel with
its selectors and switches is usually also a typical input/output user interface.
Therefore, the control function is related to the input provided by the user, while the
monitoring function is embedded in the output shown by the panel through a light
or simply the position of a knob indicator.

This allocation process, based on some AD enriched with the swimlanes, leads
to describe clearly the logical structure of the two system solutions. The BDD can
be then used to summarize the breakdown of components, as is depicted in fol-
lowing figures. Particularly, Fig. 7.15 shows the details of some of the feeding
lines. Each block shows in its compartments the data related to the operations
allocated and the reference to the swimlane, from which the allocation derives. The

Fig. 7.15 Detail of the BDD for the electrical IPS with feeding lines

Fig. 7.16 Detail of the BDD for the electrical IPS describing the heaters
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same happens for heaters, sensors, controls and indicators group of blocks
(Figs. 7.16, 7.17 and 7.18). For heaters and sensors, the multiplicity property of
directed compositions is used to specify that it is possible to consider a multiple
selection for the final system, i.e. a certain number of sensors and heaters could be
necessary to cover the whole set of zones, although the number of components is
not yet defined.

For the indicators, a unique display is used, since the information regarding the
operation of the IPS can be embedded within the centralized monitoring system of
the aircraft, despite the number of controls doubled in the flight deck. The control
panels of on-board systems are even unique in the cabin.

A different system breakdown is shown in following figures, in case of the
pneumatic IPS. The allocation performed is similar and the blocks derived from the
decomposition of the system are comparable, but the feeding lines and the actuators
are different. To realize just these differences, only the distribution and boots
subsystems are shown in Figs. 7.19 and 7.20.

As far as the breakdown-based Functional Analysis is concerned, a logical
breakdown can be defined directly without performing the allocation of operations.
The functions previously defined are already a representation of some sets of
operations, defined within the Functional Analysis. Therefore, it is possible to
connect functional and logical blocks, without any intermediate step.

The electro-thermal IPS shows a different breakdown to avoid misunderstand-
ings with the previous method. Moreover, the Logical Analysis following a
breakdown-based Functional Analysis is usually oriented to define more specifi-
cally the system components, almost close to the physical ones. It follows the
Functional Analysis where some features of the Logical Analysis have been already
performed, such as the definition of the groups of operations. This kind of Logical
Analysis is a little bit closer to the Physical one and somehow appears redundant for
this approach. A direct correlation with the physical components may be more
convenient to define faster the real system. By converse, a behavior-based
Functional Analysis leads to a Logical Analysis requiring a preliminary allocation

Fig. 7.17 Detail of the BDD for the electrical IPS describing the sensors
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of operations, before that a physical system layout is defined. An example of this
breakdown, applied to the electro-thermal IPS, is shown in Fig. 7.21, for a portion
of the control subsystem, where the allocations can be appreciated inside the blocks
compartments.

In both cases, the allocation process can be also summarized using table and
matrix views, as it was done for the Functional Analysis. The IBDs can be built to
show the internal structure of the system, being necessary to implement the com-
munication network and to describe the way in which the different parts are
interfacing with each other. Moving from the final components to the system
blocks, through a bottom-up approach, it is possible to derive the inputs required
and the outputs provided by the system and how they are managed internally. The
result is the definition of these data for each block, to enhance a further detailed
definition of the system behavior, through the Physical Analysis. The high level
IBD for the electro-thermal solution is therefore shown in Fig. 7.22, starting from
the BDD developed within the Logical Analysis of a behavior-based approach.

The two subsystems are connected through some signals, related to commands
and control (from controls to actuation) and through some feedbacks and system
status (i.e. power consumption, ice levels etc.…, from actuation to control and
indicators). Some of those signals move out of the boundary of the system, since
they are interfaced with the whole aircraft. Figure 7.23 shows the detail of the
control subsystem.

A similar set of IBDs can be drawn for the pneumatic IPS. In Fig. 7.24 the high
level IBD is shown.

A structure comparable to previous one is depicted, although the physical
parameters of the actuation subsystem are different, because of the applied tech-
nology. It is interesting to observe the lower level blocks, describing for instance
the boots, to realize the parameters which are provided (Fig. 7.25). Each boot is
characterized by a volume, which varies during the actuation, determined by the
airflow coming from the pneumatic system, at a certain delivery pressure.

Fig. 7.20 Detail of the BDD for the pneumatic IPS describing the actuators
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The power required to inflate or deflate the boot is a combination of those
parameters. It shall be assessed only during the dynamic simulation of the Physical
Analysis. So far, it might be remarked that some physical characteristics of the two
solutions are not yet clear, at present. This uncertainty is never a mistake, but just
the consequence of the structured process applied. According to it, the Logical
Analysis shapes the system structure, but it does not predict its real behavior

However, some hypothesis can be formulated to start a preliminary trade study,
to be concluded, later within the Physical Analysis. The BDDs related to the

Fig. 7.22 High level IBD for the electrical IPS

Fig. 7.23 IBD of the control subsystem for the electrical IPS
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different solutions proposed are used to formulate some suitable attributes of the
system blocks. Those attributes will be used to detect advantages and disadvantages
of each solution. They may refer to some physical parameters, like dimensions,
weight and volume, or even to energy and power consumption. Other issues can be
considered, as the operational capabilities, maintenance and cost. For the IPS, the
attributes described in Table 7.1 have been considered.

Fig. 7.24 High level IBD for the pneumatic IPS

Fig. 7.25 Actuation subsystem IBD for the pneumatic IPS
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Attributes can be embedded within the blocks compartments of the BDD, but
some dedicated formalisms to represent the trade study can be exploited.
A generalization can be used to represent the alternative solutions of the IPS, as is
shown in Fig. 7.26.

Table 7.1 Attributes considered for preliminary trade study of IPS alternatives

Attribute Description

Dimensions This attribute refers to dimensions of the overall system, which has an
impact on the available space on the aircraft

Weight This parameter represents the weight of the system (in kg)

Power
consumption

This attribute refers to the maximum power required in operation (in W)

Aerodynamic
impact

This parameter is referred to the impact on aircraft aerodynamics when the
system is operating

Installation This attribute refers to the complexity of installation of the different parts of
the system

Reliability This attribute concerns the reliability of the system and of its components

Maintainability The maintainability is the capability of being subjected to maintenance
activities. This parameter refers to the complexity of the maintenance tasks

Cost The attribute related to cost considers the whole lifecycle cost of the system
(i.e. acquisition cost, operating cost and disposal cost)

Fig. 7.26 Trade study formalization with BDD for the IPS case study
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In this case, it is easier performing the comparison directly on a single diagram,
like a dedicated BDD. As a result, it is possible to realize that the power con-
sumption of the electro-thermal system is very high, if compared to that of the
pneumatic system, as well as the acquisition cost, but many other parameters are
better. Particularly, the dimensions and weight are lower as well as the impact on
aerodynamics. The installation is easier and, since the boots are subjected to a high
degradation, the reliability is lower for the pneumatic system. The maintainability
of the pneumatic system is more difficult, because of a restricted accessibility to
boots. The electro-thermal solution seems more promising, also considering the
customer need about the reduction of fuel consumption and the decoupling of the
deicing system from the pneumatic one.

However, the Logical Analysis provides only a preliminary overview, and those
conclusions shall be verified by the Physical Analysis. A current goal of this
example is showing a suitable procedure to formulate the KPI, although it is not
unique.

7.7 Requirements Traceability in the Logical Analysis

The requirements traceability process usually relies either on visual diagrams or
matrix views of links instantiated between requirements and logical blocks. In this
case, no differences are present between the behavior-based and breakdown-based
process, since the logical blocks are linked to requirements in both the approaches.
The traceability links are here strong relations between entities, since the satis-
faction dependencies are used, which are definitely stronger than the trace link used
in the Functional Analysis. The process can be done in parallel for the two solu-
tions, to make easier the comparison between the two coverage analyses. Different
systems may have different satisfaction relations. It depends on how the system is
composed, since different components should satisfy also different requirements.

In case of the IPS similar satisfaction relationships are instantiated, although the
proposed solutions are based on two different technologies. The system architecture
is quite similar. Figures 7.27 and 7.28 show some diagram and matrix views,
concerning the requirements satisfaction for the components of the electro-thermal
system.

The result of the requirements satisfaction process is a complete coverage of
functional requirements, as shown by the Gateway in Fig. 7.29. Non-functional
requirements will be analyzed during the Physical Analysis, and in other analyses
like those performed to predict the system reliability.

It is now possible to perform a complete navigation of the model elements.
Particularly, a consistency check of the completeness of data analyzed can be done.
In practice, it is possible identifying the data flow from requirements to logical
analysis, in terms of requirements traceability and allocation from the use cases to
the logical blocks, as in Fig. 7.30.
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Fig. 7.27 Requirements satisfaction instantiated within a Requirement Diagram in the Logical
Analysis of the IPS

Fig. 7.28 Requirements satisfaction instantiated within a matrix view in the Logical Analysis
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This activity completes the functional modelling process and the logical anal-
ysis, whose results are summarized in the next paragraph.

Fig. 7.29 Analysis of coverage quality through the IBM Rhapsody® Gateway® within the
Logical Analysis

Fig. 7.30 Traceability of requirements, functions and logical components through the IBM
Rhapsody® Gateway®
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7.8 Results and Final Considerations About the Logical
Analysis

The Logical Analysis allows defining a first set of candidate system architectures to
prepare the following studies concerning the detail design. Provided that the same
MBSE approach is applied, the implementation depends on the way followed in the
Functional Analysis. A main result of this analysis concerns the allocation process,
being responsible of identifying one or more suitable solutions, capable of per-
forming the functions derived during the previous step. In addition, it includes the
final stage of the requirements traceability study, as far as the satisfaction depen-
dencies are considered. Finally, the formalization of the trade–off study is also
another important issue. It is aimed to define the candidate solutions and their
weighed properties.

Some main steps and basic features of the Logical Analysis, above described for
the test cases are herein summarized.

• The Logical Analysis starts from the functions or operations derived during the
Functional Analysis. They are allocated on logical blocks either through a direct
exploitation of some behavior diagram, like the AD, SD and SMD, if the
behavior-based approach is applied, or directly using some breakdowns,
implemented within the BDD, when the breakdown-based approach is
considered.

• The logical structure of the system is then enriched by some internal interfaces
and network, implemented through a series of IBD, that allows defining vari-
ables, ports and a suitable proposed architecture.

• The requirements satisfaction is the final step, since the traceability process
starts during the requirements and operational analyses and is concluded when a
system architecture capable of performing the required functionalities is
identified.

• A trade-off study to select the best candidate solution among those alternatively
proposed, which satisfy the functional requirements, is then started. It analyzes
some non-functional issues, like the performance, reliability and other physical
characteristics. The trade-off study is a formalization of the analysis. It shall be
detailed through some dedicated tools, depending upon the engineering domain,
to confirm or modify the solutions proposed by the Logical Analysis.

The process above described is often performed iteratively, since several levels
of design are considered, from system to component. The examples above proposed
are simplified and a single loop of iteration was considered. The number of
requirements is even reduced, to simplify the process and the logical architecture of
the system. The trade–off study is simplified as well.

The system architecture derived through the IBD shall be re-used as much as
possible within the Physical Analysis, to reduce workload and repetitions. For this
reason, a tuning process is required, especially when different tools are interfaced
within the toolchain. The Physical Analysis basically will show how it is possible
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using the data coming from the Logical Analysis to implement an executable
dynamic model in a common commercial software tool. Nevertheless, the inter-
operability of tools is currently an open issue and a direct re-use of the data is
seldom possible. A hybrid approach is applied, relying on the heterogeneous
simulation approach, based on some standard.

Despite the importance attributed by the literature, usually low, the Logical
Analysis plays a crucial role in the MBSE process. It is the connection point
between the SE and the classical tools of engineering modeling and simulation.
Moreover, numerical and physical modeling could be even more effective, since all
the issues poorly represented by numbers are included and formalized by this
approach. The iteration process which allows refining the system configuration on
the base of the numerical simulation is identified and the two environments of the
functional and physical modeling can be synchronized, through this toolchain and
in both directions. When the Logical Analysis is considered as an option, and the
Physical Analysis is assumed to be the unique core activity of the design process,
something is missed. The traceability assurance, usually neglected by the numerical
simulation, is checked by the Logical Analysis.
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Chapter 8
Physical Analysis

Abstract This main activity of engineering is described and analyzed within the
frame of the whole product development and in connection with the Functional and
Logical Analysis. The two test cases are explored to describe different examples of
physical modeling, considering the dynamic behavior of a rotor, actively suspended
and the performance in de-icing activity of the on-board system of the commercial
aircraft selected for this example. Some numerical methods are even described as
they are applied in the two proposed test cases.

8.1 Introduction

The Physical Analysis is a main activity usually performed within engineering,
since it is related to the performance evaluation, dynamic and structural simulations,
finite elements analysis, CAD modeling and similar. It includes all the possible
tasks related to numerical modeling, in different fields, and it was born to reduce the
cost related to testing on real components and systems, substituting the real artifacts
with numerical models. It is applied for sizing the system and to predict its behavior
in operation. It identifies limits and allows characterizing the real system.

Since the origins of technical computing, the physical analysis supported the
model and simulation based approach to design. It strongly relies on a virtual
representation of reality, under a set of assumptions, aimed at approximating the
real phenomena. Each field of application resorts to some specific mathematical
formalisms and equations, to implement the modeling process. Some criteria are
preliminary defined to check whether the system description proposed by the
numerical model is consistent or not. A specific set of commercial software sup-
ports this activity; therefore, results and simulations of the Physical Analysis
undergo an organic debugging, which easily detects any inconsistencies or mistakes
introduced inside models.
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All these aspects make the Physical Analysis a perfect engineering task, being
characterized by:

• velocity, especially when considering the ratio of provided results per unit time,
if compared to real-life tests;

• approximation of physical laws;
• introduction of some specific hypotheses to make easier the derivation of final

results;
• standardization, concerning both the formalisms and the data exchange, among

different modeling environments of the scientific community;
• assisted implementation process, which simplifies the detection of errors and

bugs, within the model to accelerate the review;
• model-based representation of reality, as a main target of the design process,

especially for complex systems;
• reduced cost, since it is cheaper than a set of test campaigns.

However, the Physical Analysis very seldom provides a set of alternative so-
lutions to be tested, without following a formalized and standardized Systems
Engineering approach. Numerical simulation is usually applied to some defined
system architectures. The risk of neglecting any important variant, which may be
better in terms of performance, is high.

The evolution of this activity is a suitable inclusion of the Physical Analysis
within a complete MBSE process, to enhance its capabilities and to allow a con-
sistent and seamless connection with previous analyses. This improvement could
assure the traceability of requirements, derived through the operational and func-
tional analyses, and the allocation process, which is typically finalized within the
logical analysis. Therefore, the Physical Analysis is herein proposed as a final step
of the design process, with the aim of studying even some non-functional aspects
which characterize the system. Sizing and dynamic behavior prediction are even
tasks of the examples herein introduced.

8.2 Handoff Between Logical and Physical Analyses

A proper handoff is required to assure the data consistency, as it was already done
for the functional and operational analyses, for the physical analysis, which follows
the Logical one. In this case, the focus is slightly moving from the traceability to the
re-usability of data in multiple environments. A seamless toolchain shall be guar-
anteed in terms of data consistency and traceability, but the compatibility of dia-
grams created through the SysML formalisms and the format of numerical models
are both critical issues. The Physical Analysis is usually performed within different
environments, often exhibiting some non-negligible problems concerning their
mutual compatibility. Moreover, it is necessary to maintain the link with the
Logical Analysis active, since updates require the back synchronization of models.
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Some features of the Logical Analysis shall be modified to be used for detailed
numerical analyses. Modifications are related to properties of data objects, so
extensive updates are not required.

Some interoperability issues are always a concern, when multiple software
environments are considered, especially when they are not originally planned to
communicate each other. Different means to assure the data compatibility are
available, depending on the application, but, for the purposes of this chapter, a
direct compatibility of the Systems Engineering and dynamic simulation tools will
be assured, i.e. only minor modifications to the data object to be exchanged between
environments should be required.

In interoperability cannot be ever guaranteed and other methods are applied to
solve some compatibility problems. The interoperability standards are exploited,
when available, or general purpose import/export facilities are introduced. The
handoff between the two design phases depends on the way applied to share the
model; particularly, the capabilities of tools involved allow a complete exchange of
the full architecture or even just of some parts of it. As far as a complex toolchain is
concerned, i.e. more than two software, a data exchange based on multiple levels of
interfaces among software can be accounted. The capabilities of one tool, con-
cerning the compatibility, can be exploited to link another one. This subject will be
deeply described in Chap. 9, where some strategies of either direct or indirect data
exchange will be addressed, as well as the so-called heterogeneous simulation.

In this chapter, test cases are developed using the dedicated import/export
facilities, which allow the data exchange independently on the software used.
Tuning of data coming from the Logical Analysis is investigated. Problems related
to the direct exchange of data while connecting the Physical Analysis to the MBSE
design process are explored.

8.3 Formalisms and Models of the Physical Analysis

Provided that it is impractical introducing the whole set of existing numerical or
physical models, in a single paragraph, and a dedicated book should be written,
some characteristics of tools and some methods available to perform the Physical
Analysis will be here described. The engineering domain affects quite a lot the way
of building the numerical model. Many classifications are proposed for this task,
depending on the goal of models, of their main characteristics, on the assumptions
applied. Dynamic and static models, continuous and discrete, parametric and
geometric, simplified and complete, are some typical examples.

In this handbook, the need of interfacing the Physical and Logical analyses is
considered and the necessity of introducing a model based on some physical
attributes, somehow providing a new kind of information, is faced. In addition, it is
required of characterizing the physical nature of the model itself. Two examples
will be assessed, namely the sizing model and the dynamic model. This selection is
also aimed at clarifying some differences existing between those two models, since
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they are often used indifferently, although they represent different aspects of the
physical analysis.

The sizing model. It is commonly used during the preliminary design phase. It is
aimed at identifying some specific characteristics and parameters of the system,
which are exploited to define some limits of performance or a physical envelope,
from which the class of system is derived. Power, stroke, heating and other physical
quantities are objects of the sizing activity. Computation is quite straightforward,
because some simple equations are written and solved to calculate those design
parameters. These models are implemented, under a set of hypotheses about the
operating conditions, and other boundary conditions, being necessary to find the
values of those parameters. For this reason, sizing models are referred to as
parametric, i.e. few main variables can be changed to modify the mathematical
problem, when needed. Typical sizing models are time invariant or at least they do
not include any prediction of the system dynamic behavior. Only a preliminary
sizing activity is performed, i.e. the class of the system for a given characteristic is
determined, by identifying the amplitude of some parameters for given operating
conditions. These models are numerically solved by some mathematical codes,
which exploit functions expressed within formalisms created for several specific
engineering domains. This is the case of programming languages as the Fortran, or
of some general purpose calculation environment as the Matlab® and others.
Results are shown in charts or described in reports, which help in identifying any
critical condition and in highlighting the most impacting parameters.

In aeronautics, for instance, main sizing parameters are the power, energy
consumption, flow rates of fluids, volume and weight, forces, moments, inertia,
autonomy.

The dynamic model. This model predicts the system behavior in operation, with
a degree of approximation which strictly depends on the available knowledge about
the system under design. It is used in many design phases, but specifically it is
exploited for a quantitative investigation once that the system is defined and for the
verification and validation. These models are strongly time dependent, and often are
based upon some differential equations, which need to be numerically solved. The
operating conditions are very often simulated by a dynamic model of the scenario or
environment, in which the system shall work. Like the sizing models, they are
implemented within high level mathematical codes. They can be either in combi-
nation with the sizing models or separately. When the geometry is modelled by the
sizing model, it is imported or used by the dynamic model to perform the numerical
analysis. The parametric form makes easier any required modification and updat-
ing. Results are represented as variables, being usually a function of time. In many
cases, connection with CAD models is important to derive the geometry of the
components. Exporting data is then very useful, ad some standard formats are used
to exchange data among different environments and tools.

System dynamics is used for several purposes, as the assessment of control laws,
investigating the system dynamic stability in operation, to prevent structural
damage, and analyzing several coupling effects, like the thermomechanical or
electromechanical ones, or the interaction with fluids.
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Physical models can be preliminary classified within those two groups, although
each technical domain resorts to some specific analysis, leading to a definition of
many other sub-categories.

The test cases herein studied widely exploit sizing and dynamic models. The
design of aeronautical on-board system relies on sizing models rather than on
dynamic models, more used for the whole flight mechanics, whilst the rotor
dynamics prediction is strongly based on dynamic models.

8.4 Requirements Allocation and Verification

The role of requirements during the Physical Analysis should be preliminary
defined, especially in relation with the traceability process instantiated within the
MBSE approach.

Models developed within the Physical Analysis are exploited for both the SRS
update, for a back synchronization of non-functional requirements, and for the
requirements verification. They may provide new requirements, depending on the
results of analysis, or update some existing ones. They are even a reliable verifi-
cation mean. As an expression of numerical modeling, they can be used straight-
forward to verify the system performance and some physical requirements
previously defined. Verification activity can be either manual or automatic. The
requirements verification process is nowadays an available option within com-
mercial software dedicated to dynamic simulation.

A key issue to assure a complete seamless approach, by the Physical Analysis, is
the consistency with requirements allocation of the Logical Analysis. During the
last phase, all requirements have been allocated on some logical blocks through
satisfaction dependencies. Functional requirements can be considered verified,
through this kind of relationships, while for non-functional requirements this kind
of verification is more problematic. To be consistent with the whole process, also
the elements of physical models shall be linked to the SRS, to assure the formal-
ization of the verification process, allowing also a consistency check of the selected
requirements.

The inclusion of requirements within physical models is a strategic approach to
keep the traceability under control, by creating a single self-contained artifact of
physical blocks and requirements, directly referenced to the SRS. Nevertheless, to
achieve this goal, the compatibility between simulation software and requirements
manager must be assured. This is a matter of interoperability of tools, which adds to
the need of data exchange of the system architecture, from the logical analysis. If
the compatibility is not achievable, the requirements manager and the Functional
Analysis tools can be used to provide traceability hubs separated from the physical
model, which remains the real verification tool.

In the examples, since most of the physical tools are compatible with the re-
quirements manager, the integral consistency check of requirements is assured. The
requirements analysis is now complete, after that the Physical Analysis is
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implemented. The requirements verification is a complex procedure. Several studies
are currently performed about this topic. Chapter 10 will introduce some more
details about it, although a complete description of the verification and validation
process is out of goals of this handbook.

8.5 Expected Results and Final Remarks

Main objectives of the Physical Analysis are a determination of the system behavior
and the identification of the main design parameters, which affect its performance.
Results are expressed by several models and formalisms, basically through some
numerical values and charts. They are used to update and verify the non-functional
requirements and to complete the MBSE process, with a domain-oriented approach,
strictly mathematical. Results are derived from sizing and dynamic models,
expressively built for this analysis and depending on each case study. Compatibility
of these models with the Logical Analysis and previous stages shall be guaranteed
to assure a seamless toolchain.

It might be pointed out that the Physical Analysis always played a key role in
engineering, although it is known as a numerical modeling. The quantitative ap-
proach defined by the simulation clearly states some results and predictions about
the system performance. It may be said that it cannot be skipped. It is true that
coupling the numerical modeling with the MBSE process allows enhancing fur-
thermore the powerfulness of these tools. Quantitative analyses become formalized
and organized in tight connection with requirements. As this handbook describes,
the design process shall benefit of the correlation of functional and physical worlds,
being not only recommended, but somehow required. Particularly, outputs of the
Functional Analysis are incomplete, without a numerical simulation, as well as in
engineering complex system the physical analyses need the inputs provided by the
functional modeling to completely characterize the system, through a linear trace-
ability process. When dealing with complex systems, testing many physical models,
performing a sort trial and error exploration is not enough. A logical process to
identify some eligible candidates can drive the physical analysis to perform a
consistent trade off.

The sequence of analyses related to the MBSE process, described in these
chapters, actually deploys the “system thinking”, whose goal is an objective—ori-
ented definition of a system, through a sequence of well-defined development phases,
characterized by processes and goals, and aimed at facing the design problem in all its
parts. Collaboration among system developers is behind this approach. It is no longer
acceptable working as separated units, neglecting the big picture. Systems
Engineering enables to work within the frame of a collaborative network, along a
defined path, with a tight cooperation of all the actors, dealing with different analyses
and activities of the whole product lifecycle development, to realize a truly successful
system. In this interpretation, the connection between physical and functional
modeling is a key issue, for the methodology and for the tools.

230 8 Physical Analysis



www.manaraa.com

8.6 Implementation of the Physical Analysis of Complex
Systems

8.6.1 Didactic Test Case

As it was already introduced in previous chapters, the so-called didactic test case
describes the design of a system aimed at shaping the steel wire rod produced by a
rolling mill as a straight bar into a coil to be easily stored and delivered. The
requirements and functional analyses already pointed out some relevant functions
and constraints of this system, but the final product breakdown structures needs a
preliminary screening of the state-of-the-art of the technologies suitable for this
application as well as a preliminary definition of some proposed architectures, to be
compared through a trade-off analysis, leading to the selection of the best solution.

The idea. It might be remarked that the basic idea of a new product could be
simply found everywhere by observing the nature, the environment or other tech-
nical systems, not only those already used in the inherent technical domain. As an
example a tourist walking in Paris just close to the Centre Pompidou could realize
how the spoiler system may work, just by looking at the water jets of the fountains
used to create some amazing figures (Fig. 8.1). The main water jet comes from the
bottom as a straight flow and the fountain describes a spiral of water by rotating
about its vertical axis, while a pipe imposes a defined angle between the inlet at the
water level and the outlet located in correspondence of the big mouth. This basic
idea turns out into a preliminary layout of the system, as described in Fig. 8.2.

In practice, a spoiler will include a main rotating shaft and a head. The whole
system shall compose the laying head. The rod provided from the production line
inside the holed shaft will be driven by rotation and centrifugal forces will be
applied inside a curve guideline made of a pipe which leads to form the coil as the

Fig. 8.1 Water jet at Centre Pompidou in Paris
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wire rod is produced out. Some details might change case by case, as the shape of
shaft, or the structure of the head, or even the fact that those two elements are either
separated (simply connected by bolted joints) or a unique structure. Actually the
main issue in innovation is the suspension system and the motor animating the
rotation.

From this point of view it is required that the designer performs a preliminary
screening of the existing technologies in suspension systems.

The technological scouting. A screening of the existing suspension technolo-
gies might suggest that several solutions could be applied to the test case. To
distinguish very roughly some approaches, suspension could be passive (no
external power is needed), semi-active (there is a control component which needs an
external feeding of power, while a main component suspends the floating body
without requiring external power), active (the whole system needs power to be
operated).

In case of mechanical suspension systems, purely passive, some classic solutions
consist of mechanical bearings (ball, needle and rollers), bushings, and lubricated
bearings. All those solutions introduce a direct contact between the rotating part
(namely the rotor) and the fixed frame of the system (the so-called stator). In case of
mechanical bearings with rolling elements the contact is between the rolling part
(ball, needle or roller) and the raceways of the rings, being applied one on the rotor
and one on the stator, respectively. Lubricated bearings provide a lift to the rotor
through the fluid in pressure inserted between the rings, while bushings simply are
in contact together with both the structures, but material is self-lubricated and prone
to be worn quite fast. In present case, those solutions looked unsuitable because of
the customer need of interrupting the contact between stator and rotor and reducing
the wear of materials.

Air bearings are even known and applied, but the weight and the actions of the
rotor might be incompatible with this application. Contactless or partially con-
tactless solutions were highly looked for. In this case, active and semi-active
bearings could be analyzed as well as passive contactless suspensions.

Fig. 8.2 A basic sketch of a coiler system
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If one analyzes the last type, homopolar magnetic bearings based on the
repulsion of some permanent magnets could be applied. Basically, some radial and
axial actions are provided by a distribution of permanent magnets on the lateral
surface of the rotating shaft, in correspondence of the bearing, and on the stator,
inside its housing. However, this solution does not allow calibrating in operation
the amount of action applied, nor to assure a complete dynamic stability of the
suspended system, since Earnshaw demonstrated that at least one axis should be
actively controlled to assure a stable positioning of the shaft (Brusa, 2016).

Magnetic coupling could be better exploited by resorting to diamagnetic mate-
rials, which provide a stable levitation, even if, unfortunately, they are typically
superconductive materials, which need an equipment to reduce the temperature to
operate effectively the suspension system. In this context this solution is
inapplicable.

The active bearings could be based on the actions provided either by the electric
or magnetic field. The electrostatic couplings based on the forces exerted by the two
opposite electrodes of a capacitor are too weak for the actions required in this test
case. Therefore, the electro-dynamic active magnetic bearing (Lorentz’s actions)
and the active magnetic bearing based on the generation of electromechanical
actions through the magnetic field created by some coils (Maxwell’s actions) had to
be considered. In principle, both those technologies are a suitable candidate for the
test case, although it is known that the active magnetic bearings based on the
Maxwell’s action were already applied in several other industrial systems and some
available technical standards appeared more complete to the customer, to be inte-
grated and compared to those governing the design of the whole rolling mill.
Moreover, the risk of ungoverned losses and induced currents in case of the
Lorentz’s actuators looked unsuitable to fit the requirements applied to the whole
steelmaking plant, although they are suitable in other technical applications.

Limitations applied by the customer to the presence of lubricants excluded
solutions based on electro-rheological or magneto-rheological fluids, as well as
those including a structural support to bear the weight of the rotor and an elec-
tromechanical actuator just to control the rotor balancing and whirling motion,
because of the need of absence of any contact.

For those reasons, after a preliminary screening, the technological solution
proposed concerns the active magnetic suspension with radial bearings based on the
Maxwell’s electromechanical coupling, herein described. Eventually, an axial thrust
bearing could be added to prevent the effect of a load applied along the direction of
motion of the wire rod.

It might be remarked that in the application of the SysML (or similar) language
to the modeling activity, a graphical input or a diagram to link the above mentioned
screening to the other diagrams should be helpful, although it wasn’t yet stan-
dardized. As an example a technology chart like that depicted in Fig. 8.3 could
help. It represents some typical key words to describe some different technologies
available for each design issue, as the suspension layout, the electromechanical
coupling, the energy conversion and materials. Designer might select a preferred
path within the proposed solution to draw the BDD and IBD of the MBSE model.
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The proposed solution. As Fig. 8.2 shows at least two devices are required to
support the rotor, and their sizing could be different if one realizes that the weight of
the structure is dominant in the region of the rotating axis close to the head. The
Maxwell’s actuator is composed by some active axis like that described in Fig. 8.4.

The rotor corresponds to the floating body between the two polar expansions of
the magnetic circuit. It has a mass m. Each polar expansion is equipped with a coil
fed by electric current, which generates a magnetic field. If the body is either made
or equipped with a material reactive to the magnetic field, i.e. ferromagnetic, an
electromechanical action is applied by each coil separately. Currents are fed to the
coils in a such a way that two opposite actions are generated, thus opposing to the
weight of the floating body or to the dynamic actions generated during the rotation.

Layout Energy 
conversion

Materials

•Passive

•Semi ac ve

•Ac ve

• Permanent Magnets
•Magne c Bearings
• Electrodynamic magne c
Bearings
•High Temperature Super-
conductors with magne c
repulsion (in vacuum)

Concepts

Technology charts

Mechanical
suspension

Electro-
Mechanical
suspension

Coupling

•Ball and roll bearings
•Special bearings
(ceramic) • Steel

•Composites

•Aluminum
Alloys

Fig. 8.3 An example of technological screening performed through a chart

Fig. 8.4 A basic sketch of a
single active magnetic axis
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The system looks similar to a mechanical suspension being characterized by a
stiffness k, relating the displacement to the action applied, and by a damping d,
relating the speed of the vibrating mass to the force induced. If the axis is aligned
with the weight force it has to suspend the body and to control its vibration in the
plane depicted in figure, whilst in case of horizontal direction the weight disappears
from the described equilibrium of the above figure. Commercial solutions provide
several active axis to allow reducing the flux leakage and distributing the elec-
tromechanical action along the circumferential direction of the active bearing, thus
leading to several active axes. Four axes (0, 45°, 90°, −45°) are quite common.

To control the rotor dynamic several strategies are implemented. A very simple
and classical approach resorts to a PID controller, based on a closed—loop mon-
itoring of the rotor displacement along the controlled direction, i.e. either radial or
axial. As a didactic case, this example shall show a quite simple solution, to make
easier catching some issues of the physical analysis performed. Therefore, in
Fig. 8.5, a sketch of the control applied to a single active axis is shown.

The rotor shaft is the main dynamic system. It is characterized by a mass, m,
some inertia, J, a stiffness, k, which might be either associated to the supports only,
or separated for the supports and the shaft itself, if it is assumed as a flexible body
more than a rigid body in motion. Similarly, there are some kinds of dissipations,
which apply a damping action. Those associated to the rotating parts provide the
rotating damping, while those associated to the fixed parts are the non-rotating
damping. That definition remarks that the action of a rotating damping is seen
rotating together with the shaft, while the stator applies a damping action which is
always seen as fixed in direction in the non-rotating reference frame.

Some forces, F, are applied to the rotor, and typically an unbalance condition
defined by the eccentricity of the center of mass, e, exists. Basically, the dis-
placement of the center of mass of the cross section of the rotor in correspondence
of the bearing along the monitored direction is measured by a sensor. Let’s define as
x. This measure is amplified by the sensor through a gain Ks. Then, it is compared to
the reference position of the cross section, r, being the target of control. As the
difference between the measured position and the reference increases, the error to be
controlled grows up as e. It is the input of the PID control, i.e. of a combined action
applied directly to this value (proportional), to its rate in time (derivative) or to its
integral over time (integral). In some cases, the last one is neglected and only a PD

y  -

r  +
e=r-y

ECU AMP ROTOR

SENSOR

Ex.: (PD)
Kp·e+Kd·(de/dt)

u

Ka·u ic +

i0 +

F

x
Ks·x

(m, J, k, c, , …)

Fig. 8.5 PID control of a single active magnetic axis
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control is actually applied. The ECU (Electronic Control Unit) applies the control
action, through a set of gains corresponding to each component previously
described (Kp, Kd and eventually Ki). A command u is generated and sent to the
power amplifier where it is converted from pure signal into a control current ic,
through a gain Ka. The control current is directly fed to the rotor to create the
electromechanical action, if no component of the weight has to be compensated, or
it is associated to the bias current i0 expressively added to cope with that need.

In general, that model is replicated for each degree of freedom actually con-
sidered in the rotor design. In case of the spoiler system, a couple of radial bearings,
operating along two perpendicular radial directions, and one along the axial
direction, if required, are foreseen.

The energy conversion and the goals of physical simulation. Once that the
ECU provides a command to the power amplifier and the control current is phys-
ically produced, by using an external feeding of energy (which motivates the
definition of this control as an active configuration), the conversion from electric
power into mechanical one is performed through the magnetic field. It is known that
the electromechanical action, F, is proportional to the square value of the fed
current i and inversely proportional to the square value of the distance between
polar expansion and rotor, namely the gap t:

F ¼ kmag
i
t

� �2

ð8:1Þ

Constant kmag depends on the magnetic properties of coupling (magnetic per-
meability), geometrical properties of the bearings (area) and coils (length, number).
If that force is linearized about an equilibrium condition of the floating rotor, one
can write:

F ¼ F0 þ kiiþ kxx ð8:2Þ

where a constant component of force F0 appears and two other ones depend on the
current (ki) and on the rotor displacement (kx), respectively. If the layout described
in Fig. 8.5 is applied to each axis, the equivalent mechanical stiffness of the sus-
pension k is:

k ¼ kiKaKsKp � kx ð8:3Þ

where the component of force depending on the displacement is unstabilizing, being
negative as sign indicates in above Eq. (8.3), and the damping coefficient equiva-
lent to the non-rotating damping, c, is:

c ¼ kiKaKsKd ð8:4Þ

where Ka is the gain of power amplifier, Ks that of sensors, while Kp and Kd are the
gains of the control system, being associated to the proportional and derivative
actions, respectively.
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The above described model is useful to define all of components required to
assembly the system and perform the due integration. Those elements appear inside
the BDD and IBD of the system and compose the PBS. Moreover, for a complete
verification of requirements, it is needed that some performances are predicted
through the numerical model and a simulation, by solving the equations of motions
of the system, being described through several degrees of freedom [at least the two
displacements and the two rotations which allow defining the so-called whirling
motions of the rotor in the two orthogonal planes containing the main rotational axis
(Genta, 2005)].

The numerical model of the system shall define some typical reference targets of
the design activity as:

• the critical speeds of the whole rotor, xcr1, xcr2 …
• the instability threshold of the whole rotor xinst.th..
• the limitations in strength of materials, like the spin speed inducing a plastic

behavior within the material of connected discs.

Particularly, the critical speeds correspond to a resonance of the system, i.e. the
amplitude of whirling motions grows up fairly fast, but above those values (the
so-called super-critical regime) the rotor undergoes the self-centering condition. In
this case, its center of mass is aligned to the geometrical center found by connecting
the centers of supports, and the amplitude of the reactions of bearings to the forces
imposed by unbalance is lower. Above the so-called instability threshold, the
amplitude of the whirling motions grows up exponentially and the risk of failure is
extremely high. Above the threshold, every value of spin speed excites an unstable
behavior. Moreover, above a certain spin speed, the actions induce a large stress
inside the material, especially in discs, wheels, etc., which may lead to a plastic
behavior or even to rupture. Therefore, the angular velocity of the first yield con-
dition is usually predicted. Obviously, this effect is associated to other strength
conditions concerning the fatigue, creep, impact, rubbing and so on.

Those targets are strictly linked to the design parameters of the rotor and of its
suspension system. In case of a plane model of the rotor, i.e. the so-called Jeffcott’s
rotor, if one assumes that the system is isotropic (equal properties along the two
perpendicular radial direction) the critical speed is:

xcr ¼
ffiffiffiffi
k
m

r
ð8:5Þ

while the instability threshold is:

xinst;th ¼
ffiffiffiffi
k
m

r
1þ cn

cr

� �
ð8:6Þ

The last equation shows that the instability threshold grows up with a higher non—
rotating damping as the damping previously described in the active magnetic
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suspension, while is reduced as any dissipation occurring inside the rotating part of
the system is increased (cr).

When more degrees of freedom are considered, those expressions become more
complicated, but a numerical modeling of the system is available to compute their
values. In particular, the gyroscopic effect is added and interacts with the rotor
dynamics.

In practice, the physical model of the rotor system is aimed at defining the range
of spin speeds allowed for the operation. It should assure always to operate in
self-centering condition, i.e. in supercritical regime, but never above the limit of a
structural damage of materials or of the instability threshold (Fig. 8.6). A suitable
design should carefully size the structures of the rotor system, by a numerical model
allowing a prediction of the stress ad strain occurring into the materials and a
suitable setting of control parameters to effectively control the system dynamics.

Physical models. The didactic test case belongs the so-called field of structural
rotor dynamics. To give a rough overview upon the real contents of a physical
simulation applied to that kind of system, an essential description of the main
analyses usually performed in that domain is herein proposed.

As a matter of facts, designer is interested in this case to:

• define the geometrical model of the whole system to check its compatibility for
assembly and integration with the main plant;

• predict the dynamic performance in rotation, to prevent the effects of critical
speed, dynamic instability and unbalance;

• set-up the control based on the active magnetic suspension, to perform the
design synthesis of the whole system;

• prevent failures and related risks, through a consistent RAMS analysis;
• predict the materials behavior to prevent any unsafe condition in operation.

Those tasks are reached by resorting to some preliminary models:

• geometric, describing shape, volume and size of the system;
• dynamic, represented in terms of dynamic equilibrium equations of the whole

system;

Fig. 8.6 Sketch of the operation of the actively control rotor
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• structural, describing the system as an assembly of elastic bodies subjected to a
stress and strain distribution within materials under loading condition;

• of system control, to define its strategy applied to the dynamic behavior of
system. It includes a detailed description of actuation and sensing operations and
of related devices applied to provide that service;

• of system reliability, through several kinds of approaches now available in the
literature.

All those models should be harmonized, interoperated and effectively connected
to the requirements and the functional models previously described.

In the didactic test case, the activity above mentioned was developed as is herein
briefly described.

Geometric model. A preliminary geometric model of the rotor is needed to
identify shape, size, weight and physical properties of rotor and connected acces-
sories. Geometry is created through a suitable software, by means of a mathematical
model, through a rough graphical impression of an industrial laying head. It simply
describes each architectural detail, as in the technical drawings provided to the
manufacturing units along the product lifecycle development. This activity allows
knowing the proposed volume and related mass and inertia to be made rotating and
controlled.

Dynamic model. Once that the digital model of rotor is ready, the whole system
consisting of stator, suspension and rotor is analyzed. A structural model is
developed, through some mathematical issues. The static interaction between rotor
and stator can be easily investigated by assimilating the rotor to a rigid body and
computing the reactions required to the suspension system, when the rotor is simply
stand-alone and supported by some bearings. This approach is aimed at defining a
preliminary configuration of the so-called “bias” parameters of the suspension,
when active, like in this example. Reactions are computed as in beamlike structures,
when static equilibrium equations are written. Moreover, it is possible to define
even the displacement of the rotor from the statoric platform, to check that no
interference between bodies occurs.

To analyze the dynamic behavior in rotation, the theory of rotor dynamics can be
applied. The suspension is roughly modeled as an equivalent spring-damper system
(Fig. 8.7). The rotor could be either assumed to behave as a rigid or flexible body.
In this case it was sufficient investigating the rigid body motion, since the effects of
flexibility of shaft could affect the dynamic behavior at fairly high spin speed.

A simplified and equivalent model of the rotor is sketched in Fig. 8.8. The main
body is just represented by the line axis. Rotation occurs about the Z axis, at spin
speed x, while coordinates X and Y describe the so-called whirls of rotor in the
radial plane. The two bearings of the suspension system are defined as A and B,
respectively. The electric motor applied between bearings to make the system
rotating, shown in Fig. 8.7, is either introduced as an action depending on time in
transient analysis, or just considered as an operation constraint allowing a regular
and constant spin speed, in the frequency domain.
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Usually, the dynamic equilibrium of rotor is written in a fixed reference frame
whose origin is O, by identifying the position of center of mass, P, eventually
unbalanced of an eccentricity e, from the geometric center of the rotor cross section,
C. The linearized equations of motion, when only four coordinates are used, namely
two translations x and y along the two radial directions and two rotations uY and uX

in planes ZX and ZY, respectively, and the system is undamped are:

m€X þKxX ¼ m�x2cos xtþ að Þ

m€Y þKyY ¼ m�x2sin xtþ að Þ

Jt€uX þ Jpx _uY þKuXuX ¼ �vx2 Jt � Jp
� �

sin xtð Þ

Jt€uY � Jpx _uX þKuYuY ¼ vx2 Jt � Jp
� �

cos xtð Þ ð8:7Þ

where m is the rotor mass, Kx, Ky, KuX, KuY, are the stiffness coefficients applied to
the four dof’s, x is the spin speed, e is the static unbalance and a describes its
position in the radial plane through a polar reference. The third and fourth equations
describe the role of gyroscopic effect, through the transversal, Jt, and polar, Jp,
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Fig. 8.8 Discrete model of
the test case system

Fig. 8.7 Sketch of the
modeled test case
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moments of inertia of rotor, the dynamic unbalance v, and its relative location to the
shaft, described by b.

The above equations can be transformed in matrix form as:

M€qþ Cn þCr þxGð Þ _qþ K � ixCrð Þq ¼ x2 m�eia

v Jt � Jp
� �

eib

� �
eixt ð8:8Þ

The system inertia is introduced by matrix M. The non-rotating damping,
favorable to stabilize the rotor, is Cn and is provided by bearings. A rotating
damping, Cr, is even included. It is induced by any kind of dissipation occurring
within the rotor, like the friction between wire rod and rotor structures in present
case. It concurs to make unstable the system, above the instability threshold and in
supercritical regime, since it affects the stiffness term, by introducing a contribution
which is negative and rotated of 90°, as the imaginary unit indicates. The gyro-
scopic effect associated to the polar moment of inertia is introduced by matrix
G. Equation (8.8) describes a pure mechanical and uncontrolled system. It is used
to find all the design parameters above mentioned. A periodic and harmonic so-
lution is assumed as:

q ¼ q0e
st ð8:9Þ

being q the set of complex coordinates, q0 the amplitude of dynamic response, and
s = r + ik the complex frequency of whirling motion, whose real part, r, describes
the rate at which the amplitude increases in time. A negative value is beneficial
since the whirl is damped and gradually decreases, while a positive value is a
symptom of dynamic instability. The imaginary part, k, is the frequency of whirling
motion. The homogeneous equation associated to Eq. (8.8) allows calculating the
critical speeds. The above equation is written with a null right hand term and the
solution of Eq. (8.9) is introduced, by setting k = x. The unbalance response is
found in terms of amplitude of whirling motions, by solving the complete forced
equation of motion Eq. (8.8).

The instability threshold of forward whirls is found by plotting the amplitude of
all the whirling motions associated to the dof’s, as a function of spin speed, x, and
finding when they suddenly grow up, in correspondence of a change of sign in the
real part of s, as in Fig. 8.9, where values were made nondimensional with respect
of the scale of graphs (s*, s°, x*). In the so-called Campbell diagram, when the
dynamic response is that of Eq. (8.9), the real part of parameter k describes the
frequency of whirling motion, while its imaginary part describes the decay rate of
whirl. Transient dynamics can be investigated by solving in the time domain the
same equation of motion and plotting the trajectory of point P in the radial plane as
a function of time (Fig. 8.10).

Electromechanical coupling. Right now, the rotor was simply considered as a
mechanical system, without control action. When an active magnetic suspension is
applied and radial active magnetic bearings are used to support and control the
rotor, Eq. (8.8) can be updated as follows:
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M€qþ Cn þCr þxGþC�ð Þ _qþ KþK� � ixCr � K�
u

� �
q

¼ Fn þF�
0x

2 m�eia

v Jt � Jp
� �

eib

� �
eixt ð8:10Þ

As it was previously described, the control action applied by the magnetic field
created by the magnetic bearing consists of a constant effect, due to bias current,
referred to as F0

* which contrasts the weight indicated through vector Fn. In case of
effective calibration of the system, those two contributions should compensate each
other and disappear from Eq. (8.10). The variable contributions, in a simple control
like that assumed, are associated with damping control matrix C*, stiffness control
matrix K*, and Ku

* whose definition could be understood by referring to previous
Eq. (8.2), Eq. (8.3) and Eq. (8.4). Moreover, since the application of a contactless
suspension is aimed at avoiding a mechanical connection between stator and rotor,
the unique effect of non-rotating damping is provided by C*, as well as stiffness
only consists of K*, and Ku

*. Therefore, the final model to be implemented corre-
sponds to:

M€qþ Cr þxGþC�ð Þ _qþ K� � ixCr � K�
u

� �
q ¼ x2 m�eia

v Jt � Jp
� �

eib

� �
eixt ð8:11Þ

Structural model. The above equations allow studying the dynamic response of
the controlled system in open loop, closed loop, in terms of critical speeds, dynamic
stability, unbalance response and performance of the active suspension. Actually,
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Fig. 8.9 Example of numerical results of in rotor dynamics modeling
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preventing the risk of plasticity inside the materials of rotating parts and damage,
like fatigue, static rupture or buckling if a compression is applied to a slender shaft,
is a key issue of safety engineering and of design. Those phenomena could be
investigated by resorting to a preliminary stress analysis applied to the whole
system, in several operating conditions. The finite element method is appropriate
for this activity. It allows computing the displacements and rotations of elastic
body, after a preliminary discretization into finite elements, in correspondence of
the so-called nodes first, and then, in other parts of the structure, together with stress
and strain. Usually, the geometric model is discretized in finite ad simple elements
and then loaded in correspondence of nodes. The code automatically writes some
equilibrium equations, associated to elements, to be numerically solved to find, for
instance, the stress distribution as in Fig. 8.11, where a small wing is modeled,
discretized, and stress analysis is finally shown. Analytical methods could be
applied to the shaft of the didactic test case, but a numerical approach is better for
the laying head and some other components to prevent the occurrence of yielding
and rupture or fatigue collapse.

Tools. In the didactic case the tool chain basically includes a geometric modeler
to draw the system, whose result looks like an input for a dynamic simulator, where
both the rotor dynamics and the energy conversion provided by the active magnetic
suspension under the command of control are modeled and a finite element code. In
principle, a professional tool for CAD could be linked to a dynamic simulator like
Modelica®, Simulink® or similar and then to a FEM code like the MSC Nastran®,
Abaqus®, Ansys® or similar. In this case, it was possible resorting to an unique
simulation environment like the DYNROT© code, being a third party of the
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Fig. 8.10 Example of the numerical modeling of the rotor dynamics (orbits in presence of
dynamic instability)
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MATLAB®, in which the main routines to analyze the rotor dynamics, the active
control produced by magnetic bearings and the stress occurring inside the main
rotating shaft, as is identified in Fig. 8.2, were implemented. This selection avoided
the difficult synchronization of different software.

The design process could be deployed as follows. A proposed layout is pre-
liminarily drawn. It leads to know the mass, inertia, dimensions, weight and volume
of the rotor. All those numerical data are listed into an input file. It is either obtained
by the geometric modeler when used, or inside the rotordynamics code directly,
through the mesh of elements. Weight suggests the static reactions of suspension
system and leads to know the bias current required to apply the desired forces.
Immediately, this current is a reference for the actuator, both in terms of magnetic
circuit and of temperature induced by the Joule effect. A maximum eccentricity
corresponding to the worst unbalance condition is defined, depending on the class
of unbalance which the rotor belongs. This input suggests the range of control
currents to be added to the bias force and to complete the actuator design.
Moreover, the range of radial displacements to be monitored is even defined, since
the goal of control system is interacting with the rotor as soon as it leaves its
centering condition. Basically, those data allow defining some gains described in
Eq. (8.1) to Eq. (8.4). Particularly, ki, ku, F0 are preliminarily selected.
A technological screening on the available power amplifiers and sensors suggests
some suitable values of Ka and Ks, while targets about the critical speeds and the
instability threshold can be used to find a preliminary set of gains for the control
system, particularly Kp and Kd. Those inputs can complete a proposed layout for the
actively controlled system and the rotor dynamic analysis could be performed to
verify requirements about the unbalance response, the dynamic instability, the
maximum spin speed allowed and the distance between stator and rotor, even by
resorting to the stress analysis, as it was previously detailed.

8.6.2 Industrial Test Case

The Ice Protection System case study is a typical example of equipment which
requires a detailed physical analysis to establish a reliable sizing process and an
assessment through dynamic simulation of operating conditions. This is a

Fig. 8.11 Example of finite element modeling of a wing (geometry, discretization and equivalent
stress distribution under uniform load)
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safety-critical system, since it must face a dangerous problem, like the ice accretion
on airfoils and nacelles, during the aircraft flight, because it may lead to the aircraft
uncontrollability, if it is not detected and stopped. The ice accumulation on wings,
empennages and engines has a negative effect, like weight and drag increasing, and
reduction of lift. In addition, unbalance due to asymmetric aerodynamic loads could
be introduced. A suitable solution shall be then identified either to avoid the ice
accumulation (anti-icing) or to melt and/or break the ice, once it was grown on the
aerodynamic profiles (de-icing).

All aircrafts are equipped with simple or complex IPS, which resort to some
technologies, depending on the application, category of aircraft and performance
requested. This example provides some main features of this system, with particular
focus on the physical analysis and simulation required to assess its characteristics
and behavior, starting from the results obtained during the definition of system
architecture, within the Logical Analysis.

Problems and solutions. Everybody knows that ice can be melted by providing
a certain amount of energy heating a solid volume or by applying a load to break it.
Moreover, some chemical reactions can be helpful to prevent the ice accretion, for
example, exploiting some dedicated fluids, exhibiting particular characteristics at
low temperature. Those considerations motivate the number of IPS proposed and
applied not only in aviation domain, but even in other industrial fields, like auto-
motive engineering.

The physical phenomenon is quite simple, but selecting the best IPS solution
depends, case by case, on some different issues, to be carefully evaluated.
Performance, reliability, installation and cost are examples of criteria to be con-
sidered in design. The nature of ice can be even different, depending on the
operating conditions (ice accretion rate, dynamic conditions etc.…) and on the
environment (altitude, pressure, temperature, etc.…). This affects a lot the choice.

Concerning aeronautics, ice accretion is caused by the presence in clouds of
supercooled droplets of water, being liquid even in case of temperature lower than
0 °C. They freeze instantly, when impacting the aircraft surfaces. The presence of
water in clouds is generally measured through a parameter called Liquid Water
Content (LWC), in grams per cubic meter, whilst the diameter of droplets is
assessed through the Mean Volume Diameter (MVD), in micrometers. The phe-
nomenon is also influenced by temperature and by the type of cloud encountered
during flight. The most common environment includes droplets of around 15–
40 µm, at temperature ranges from 5 to −20 °C, with maximum associated LWC of
0.8–2.8 g/m3, when dealing with stratiform and cumuliform clouds, respectively.
Those atmospheric conditions, concerning clouds, are referred to as Continuous
Maximum and Intermittent Maximum atmospheric icing conditions, while the
whole environmental parameters herein cited are listed within the Appendix C of
the CS-25 regulation concerning the atmospheric icing for Certification
Specification of Large Aeroplanes (EASA 2017) (Fig. 8.12).

During last years, some severe icing conditions were met by several aircrafts
around the globe, leading to very high accretion rate and extension of surfaces
undergoing the ice accumulation. The certification of aircraft, under these extreme
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weather conditions was then included within a new chapter of the regulation, named
Appendix O, concerning the Supercooled Large Drops (SLD) icing conditions.
The SLD environment includes freezing drizzle and rain, whose drops may reach
more than 500 µm (even 1000 µm sometimes), with LWC and temperature
envelopes described by Fig. 8.13.

The determination of accretion rate, resulting from those environmental condi-
tions, the extension of protection on the aircraft most impacted zones and the
effectiveness of the IPS system are typical issues to be faced by relying on physical
simulation. Data coming from the regulation are used as a main input to the system
model, since they contribute to describe the operational environment.

A typical IPS is here considered. The Ice Protection Systems use the power
source available on the aircraft to provide an effective anti/de-icing mean to face the
ice accretion phenomenon. They resort either to electrical or pneumatic power
provided by on-board systems (Electrical Power System and Pneumatic System
respectively). Some combinations of these power sources may be used to derive
hybrid systems, which are currently under study, together with some other solutions
(Goraj, 2004), like the use of alcohols and fluids, as it is exploited on some small
aircrafts. The electrical and pneumatic solutions represent the most widely used in
aeronautics. Some properties are herein described.

• Pneumatic IPS—this system uses pneumatic air coming from the engines bleed,
which is fed at high temperature and pressure. The air flows through dedicated
piping, under the leading edges of aerodynamic profile, to melt the ice layers, in
direct contact with the skin. Aerodynamic drag then detaches the ice pieces from
the external surfaces.

• Pneumatic IPS with inflatable boots—this system uses pneumatic air coming
from the engines, to inflate some rubber chambers, located on the skin of airfoils

Fig. 8.12 Continuous Maximum (left) and Intermittent Maximum (right) LWC profiles defined
within Appendix C of CS-25
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to break the ice by mechanical action, basically due to the changed shape of
profiles.

• Electro-thermal IPS—this system uses the Joule effect provided by dedicated
resistances located on the skin of the airfoil. The classic system uses some
alternated continuous heated resistances and some cyclic heated resistances to
heat different zones, thus creating some different temperature gradients, to melt
ice layers in contact with surfaces. Aerodynamic drag detaches then the ice from
the airfoils.

• Electro-mechanical IPS—this system uses a combination of electrical heating on
the skin and electro mechanical actuators, located below the skin, to produce a
dynamic action, able to detach ice layers from the airfoil.

• Electro-expulsive IPS—this system uses piezoelectric actuators, located under
the skin, to produce concentrated loads on the structure, to detach ice layers
from the airfoil. Electrical heating is not used.

Some other technologies are even available, although they are right now far less
applied.

• Shape Memory Alloy based IPS—this system uses some specific shape memory
alloys. They change their chemical phase and shape, when heated through an
electrical stimulation, and provide some actions, induced by strain. This system
looks similar to pneumatic boots, in terms of shape change.

• Ultrasound IPS—this system uses sound waves to destabilize the ice layers in
direct contact with the skin, through some dedicated actuators, installed inside
the airfoil.

• Antifreeze fluid based IPS—this system uses a porous channel system to pump
glycol fluid on the aircraft surface, lowering the freezing point of the water and
acting as anti-ice mean.

Not all the described IPS solutions are actually operational. For example, electro
mechanical and electro expulsive systems were tested only in laboratory or on some
prototype, in maiden flights. Electro-thermal and pneumatic IPS are equipping the

Fig. 8.13 Freezing drizzle (left) and freezing rain (right) LWC profiles defined within
Appendix O of CS-25
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most of commercial aircrafts in service. Fluid based IPS is also applied, in general
aviation aircraft.

Selected IPS for the case study: electro-thermal IPS. This system is a com-
bination of anti-ice and de-icing strategies to face the problem of ice accumulation.
It uses the heat produced by resistors, through the Joule effect, to raise the tem-
perature of surfaces where they are bonded. It is a medium-high power consump-
tion system, requiring a lot of energy per unit time. Electrical power is exploited in
two ways, to provide a total ice protection. The total protected surface is divided in
two main areas, which have different functions. A continuously heated zone is close
to a cyclic heated zone (Fig. 8.14).

The two zones are alternated to create a sort of grid. The continuously heated
surfaces are located on the very front part of the leading edge and in between the
cyclic zones to produce an anti-ice mean. Cyclic zones work as a pure de-icing
device and provide high power, in a very short time, to melt the ice layers, in direct
contact with the skin. The detachment of ice due to aerodynamic effect is facilitated
by the presence of adjacent continuous zones, which prevent that ice blocks remain
stuck on the limit of the cyclic zones. The portion of protected surface is limited to
the 15% of the mean aerodynamic chord of the airfoils.

The number of continuous and cyclic heated zones and the maximum power
peak constitute the main sizing parameters of this system (Chiesa, 1995). To reduce
the power consumption, the optimum number of cyclic and continuous heated
zones shall be determined. Timing and sequence of activation of those zones shall
be even derived, to avoid too high peaks of power consumption.

The selection of number of zones protected and the determination of maximum
power can be performed looking at the simple sizing laws that characterize the
behavior of continuous and cyclic heated zones. Power is a function of the number
of zones and has a minimum in correspondence of a certain number of cyclic zones.
The power Pcont required to heat continuously some zones is directly proportional to
the surface Scont protected with the anti-icing strategy, through the specific power
qcont, which is around 21 kW/m2, in case of continuous heaters (i.e. the higher the
number of continuous zones, the higher the power):

Pcont ¼ Scont � qcont ð8:12Þ

Fig. 8.14 Typical
arrangement of electrical
heaters (Chiesa, 1995)
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The power required to heat one cyclic zone Pcycl (only one at time) reduces with
increasing number of zones ncycl, since the higher the number is, the lower the
extension of the single zone over the cyclically protected surface Scycl. The specific
power qcycl in this case is around 28 kW/m2 or higher. Those figures actually
depends on the heating time, the smallest the time of actuation is, the higher the
specific power shall be to produce the same effect, i.e. the energy per second
provided to the zone shall be higher since the activation time is lower:

Pcycl ¼ Scycl � qcycl	ncycl ð8:13Þ

The total power PTOT is then the sum of the two contributions:

PTOT ¼ Pcont þPcycl ð8:14Þ

The number of zones shall be determined for each aircraft section, to find the
optimum solution for wing, horizontal stabilizer, vertical fin and engines inlets.
Moreover, the optimum condition found may be changed, considering timing
issues, which constitute the second sizing problem. The number of cyclic heated
zones found may be too high, thus requiring a huge activation sequence, in terms of
time. To reduce the power peaks, only one zone is usually actuated at time,
avoiding superpositions, except for very low-power zones. If a long time passes
between two subsequent activations of the same zone, the ice accretion may be too
high and heater may not be capable of melting the inter-cycle ice (ice accumulated

Fig. 8.15 Typical arrangement of pneumatic boots (FAA, 2012)
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between two activations) (FAA, Effect of Residual and Intercycle Ice Accretion on
Airfoil Performance, 2002).

A compromise shall be found, between the reduction of power due to the
extension of heated zones and the timing of the actuation sequence. A practical
solution, if the optimum number of cyclic zones shall be kept, consists in raising the
specific power of cyclic heaters, reducing the activation time for each zone.
However, some technological limits are present, for the commercial heaters used for
this kind of system. Therefore, it is not possible to raise too much the specific power
without causing some damages or affecting the reliability of this component.

As a final remark, it shall be highlighted that electro-thermal anti-icing is also
used to prevent the ice accretion on small appendices like antennas, sensors, horns
and propeller blades, when present, while de-icing devices are inapplicable. An
additional amount of power shall be then considered within the final power budget,
to avoid problems during sizing.

Selected IPS for the case study: pneumatic IPS with inflatable boots. This
system uses some inflatable chambers, located close to the leading edge of the
airfoil, which break the ice during an inflation/deflation process, by resorting to the
force produced by a dynamic change of size of boots and of the geometry of airfoil
(Fig. 8.15).

The pneumatic power is taken from engine bleed as a high-pressure airflow. The
amount of airflow required to inflate the boots is a main sizing parameter, although
its determination is never easy. During the aircraft operation, the power provided
shall be enough to inflate the boots, which exhibit an intrinsic resistance due to
flexibility of rubber material, against the effect of air pressure flowing at very high
speed and against the adhesion resistance of the ice layers accumulated. The bal-
ance of forces can be investigated:

pregulated � Sboot ¼ Fboot þ 1=2 � q � V2 � Sboot þFice ð8:15Þ

where the action applied by the boot, on the left hand, is in equilibrium with the
reaction of polymeric material, Fboot, the aerodynamic effect, associated to the
aircraft speed, V, and the action of ice accumulated, Fice.

One of the most difficult contributions to be evaluated is the ice adhesion.
Generally, it is identified through some tests on ice, performed within the wind
tunnel, since it is rather difficult modelling these phenomena, to suitably predict
their action, as a function of speed, type and amount of ice, atmospheric conditions,
rugosity of surfaces, etc.…

Considering some operating parameters, pressure and temperature shall be
controlled to avoid any damage of boots. A pressure regulator is required as well as
a distribution subsystem, between engines and actuators. The amount of airflow
taken from the engine, usually from compressor stages, shall be reduced as much as
possible to avoid destabilizing the turbomachinery. Volume and dimensions of
protected areas depend on the size of aircraft and aerodynamic appendices. In any
case, the chordwise extension is generally lower if it is compared to the
electro-thermal IPS, only the 10% of the mean aerodynamic chord.

250 8 Physical Analysis



www.manaraa.com

This system is widely used for commercial turboprop aircrafts, general aviation
and small business jets. However, it has some drawbacks in terms of aerodynamic
interface, since boots actuation slightly increases the resistance of profiles and may
affect the overall balance, in case of asymmetric activation, as fuel consumption.
The air taken from the engine compressor, increasing the fluid pressure, while
consuming a portion of the energy coming from fuel, is subtracted to thrust.
Considering the aircraft subsystems, the need for a pneumatic system increases the
overall complexity of the architecture and requires a dedicated power feeding. The
modern aircraft design is looking for more-electric (MEA) or even all-electric
(AEA) subsystem architectures, aimed at reducing or eliminating the presence of
non-electrical power source, like pneumatic and hydraulic ones, to reduce the
overall complexity and to assembly a more homogeneous set of subsystems, with
standardized interfaces.

Considering the reliability, boots suffer fatigue, more than in case of electrical
heaters. Presence of an electrical anti-icing to support the pneumatic system is
always required for small appendices; therefore some additional devices, using the
electrical power sources, shall be designed separately.

A great advantage of this system is the low power consumption, if compared to
the electrical IPS and the general simplicity of architecture, which has been used for
more than 50 years in aeronautics, starting from World War II.

Physical models. For the proposed case study, three physical models are pro-
vided as an example of implementation. A sizing model for the electro-thermal IPS
and two dynamic models for both the candidate systems are examined.

Sizing model for the electro-thermal IPS. This model is aimed to determine
the number of zones protected, the maximum power peaks and timing, for an
electro-thermal IPS. It consists of an ad hoc built executable code in the Matlab®

environment, receiving the geometric data of protected aircraft surfaces from the

Fig. 8.16 Determination of
minimum power consumption
of the wings
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SRS, the profile of airfoils and some inputs about the specific power, defined by the
user, to compute the above mentioned results.

Considering the aircraft described in Chap. 4, some main results are collected in
charts, which visualize the optimal number of cyclic heated zones, and the related
power peaks as a table view. Figure 8.16 shows the chart related to the protection of
wings.

The best result includes 21 cyclic heated zones, with a power consumption of
about 24.5 kW (peak), considering wings only. Figures 8.17, 8.18 and 8.19 show
some similar results for horizontal stabilizer, vertical fin and engines.

When the optimal number of protected zones is set up, assuming the maximum
power peak, computed including the total continuous power needed for the con-
tinuous activity of heaters and appendices, the maximum power requested by the
activation of the most impacting cyclic zone (wing) is about 51.6 kW. If 74 cyclic
heated zones are assumed, even considering the components exploiting the maxi-
mum specific power available on the market (62 kW/m2 for an activation time of
only 2 s) the total sequence lasts 148 s. This appears too much, considering the
inter-cycle icing issues.

The number of zones can be reduced, accepting a slight increasing of power
consumption. This analysis is summarized in Table 8.1, where power peaks are
listed, for a modified configuration and power deltas describe the additional power
required compared to the optimum conditions.

The power increases, because of the non-optimal number of cyclic heated zones,
but it is limited to 7% of the power peak considered for the worst case. However,
since the total number of zones is almost halved (38 instead of 74) the required
time, to perform the same actuation, is about 76 s, instead of 148.

If power consumption is a minor problem, the areas protected can be furthermore
reduced. This compromise needs to be evaluated through a dynamic model, aimed
at assessing the actual ice accretion, under the conditions specified by the CS-25.
Results obtained from the preliminary sizing model in terms of specific power,
sequence of activation and protected surfaces, listed in Table 8.2 for the modified
case, should be evaluated together with the numerical results of simulation.

It is important to highlight that extension of protected areas depends directly on
the actual value of airfoil surface, through a fixed percentage of spanwise and
chordwise coverage. Thus, considering a specific configuration, the total protected
surface is always the same, but, depending on the number of cyclic heated zones
selected, the amount of continuous and cyclically heated surfaces changes
accordingly. Between two cyclic zones, a continuous heated zone is required to
assure ice detachment, making the number of continuous zones a direct function of
number of cyclic ones.

Results obtained through the sizing model can be translated into some
non-functional requirements. For example, it is possible to generate requirements
for the number of zones, the protected surface, the timing and, especially, the power
levels. Off course, the update and verification of requirements can be possible only
by exploiting a dynamic simulation of the system, implementing the operating
conditions specified by regulations.
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Fig. 8.17 Determination of minimum power consumption for the horizontal stabilizers

Fig. 8.18 Determination of minimum power consumption for the vertical stabilizers
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The connection of two models is guaranteed by the re-use of the parameters
defined during the sizing process. For the proposed case study, the Simulink® is
used as a modelling environment, to represent the system dynamics. In this case, the
Matlab® and Simulink® allow directly using the same workspace making the
dynamic model capable of accessing the data previously computed. The consis-
tency of data is thus automatically guaranteed.

Dynamic model for electro-thermal IPS. This model has been derived to
assess the ice removing efficiency of electro-thermal IPS, under the conditions
specified by regulation; to verify the hypothesis about power consumption and to
evaluate the necessary control strategies for the actuation of protected zones. It
derives from the system architecture, formulated within the Logical Analysis and,
being further developed, it provides an executable version where numerical results
can be analyzed. Requirements allocation on physical blocks is also supported to
organize the verification campaign. The model is developed in the Simulink®

Table 8.1 Summary of determination of number of zones with associated power consumption

Zone Optimum Selected Power peak (kW) Power delta (kW)

Wing 21 14 45.2 +1.5

Horiz. 21 10 41.3 +2.9

Vert. 10 6 41.2 +1.2

One Eng. 11 4 36.1 +0.9

Fig. 8.19 Determination of minimum power consumption for one engine
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environment, which is fully compatible both with the requirements manager tool
(DOORS®) and with the functional modeling tool (Rhapsody®), thus allowing a
good interoperability within the selected toolchain.

Three main stages of model development are herein described.

• Preliminary implementation phase, consisting in the update of logical archi-
tecture, to be compatible with physical analysis tool, in terms of data types, and
in a first implementation within the physical modeling environment.

• Detailed implementation phase, referred to as the main physical modeling ac-
tivity, where the architecture is updated and the final model is simulated to
compute the numerical results.

• Requirements allocation and verification phase, where requirements are con-
nected to the physical blocks to organize the verification activity.

As far as the preliminary implementation is concerned, the main source of data is
the communication network, represented through some IBDs in the Logical
Analysis, where the logical blocks, whose hierarchical architecture was imple-
mented through the BDDs, are connected in terms of data exchanged and mutual
interfaces. Independently from the tool used for the Physical Analysis, generally, an
update of the data model of the Logical Analysis is required, to perform the export,
as, in this case, is directly done towards the Simulink® model.

Some main model elements shall be translated into physical components, as
diagrams, blocks and ports. A proper format shall characterize these elements to be
recognized, during the export operation. The Rhapsody® tool includes a specific
model profile which includes the stereotypes necessary to adapt the data model for
Simulink® export.

Particularly, it may be remarked some detail.

• If a block is identified by an IBD, thus containing other low-level blocks,
represented as parts within the diagram, it shall be characterized by the
�Structured Simulink Block� stereotype, to indicate that it is a sort of con-
tainer of other elements.

• The low-level blocks, which do not contain other parts, thus not requiring an
IBD to be represented, shall be identified with the �Simulink
Block� stereotype. This allows defining the two concepts of container and of
simple element, so that the physical tool can recognize the global system ar-
chitecture. Basic Simulink® blocks are represented in Rhapsody®, with a default

Table 8.2 Areas of protected surfaces for different aircraft zones

Zone Cont. surface (m2) Cycl. surface (m2) Subtotal (m2)

Wing 0.67 4.23 4.9

Horiz. 0.47 2.70 3.2

Vert. 0.39 1.47 1.9

One Eng. 0.13 0.37 0.5

TOTAL 1.66 9.14 10.8
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behavior, i.e. with a standard SMD generated when the stereotype is set. In the
test case, this feature is not implemented, since the behavior of blocks will be
described directly in the Simulink®.

• If blocks stereotypes are instantiated in a correct way, ports and signals are
exported with no need of a specific update. The final model in Simulink® will
represent the ports and their connections as they appear in the IBD.

The way in which the diagrams appear shall not be modified, but the way
followed to export the elements shall be carefully defined. It is always recom-
mended to start by exporting data from the low-level elements to structured blocks.
If this action is not performed correctly, the Simulink® might be unable to generate
the diagram, because of a lack of data, i.e. high-level blocks will not have low-level
diagrams fully characterized. In practice, for the electro-thermal IPS case study, this
means that, for example, the logical blocks representing the control unit, control
panel and monitoring panel shall be exported, as some simple Simulink® blocks,
before the subsystem containing them, as the control and monitoring subsystem.
Moreover, blocks shall be contained within a dedicated package to be exported.
A direct export of a block located under another block within the Rhapsody® model
tree is not yet possible.

It looks nice creating a copy of the logical breakdown and to organize it through
some packages, divided by levels of the system architecture. This process shall be
performed for all blocks. During the export process, a flow port must be connected
to another flow port only. Multiple connections create problems, while trying to
replicate the diagram. The use of simple signals is suggested, more than structured
signals, carrying more than one variable.

Finally, some comments can be made looking at the diagrams generated in
Simulink®, as Fig. 8.20 shows, concerning that derived from a high-level IBD of
the electro-thermal solution.

Despite the format, the content is the same of Fig. 7.22, described in Chap. 7.
These blocks can be populated with low-level and dedicated behavior diagrams,
depending on the system architecture, like in Fig. 8.21, the low-level diagram of the
control and monitoring subsystem.

Diagrams can be directly derived from the Logical Analysis or even new ele-
ments can be included manually. In this case, a preliminary model is enriched with
some new or modified blocks.

The detailed implementation phase starts here and consists of an advanced
physical modeling process, that will lead to the final simulation of the whole model.
The system architecture may be deeply affected by this phase. This happens
because, during the Logical Analysis, the system architecture has been hypothe-
sized, just looking at funtions. When physical contents are concerned, the view may
change and, consequently, the whole structure of system may be impacted. The
interoperability between the Simulink® and the Rhapsody® assure a backward
synchronization, thus allowing exporting data from the first tool to the second one.
Figure 8.22 shows in detail the actuation subsystem, as is implemented in
Simulink®.
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Controllers send some signals to activate the heaters represented by green
blocks. A value of specific power is selected, depending on the cycle. The output is
the power consumption, whilst the sensor is not included in this view. Timing,
specific power and surfaces data are all coming from the sizing model. Blocks are
derived from the Logical Analysis, thus assuring consistency of data. A simulation
can be then performed, to evaluate the power consumption and ice melting capa-
bilities. Figure 8.23 shows the predicted power consumption. The peak is consid-
erably higher than that hypothesized by the sizing model. The small appendices
increase of about 5 kW the total power, since some additional continuous heaters
shall be considered. However, the most impacting phenomenon is the superimpo-
sition of heat-on and heat-off transients of heaters. Notably, since they provide a
high specific power for low time, the total power peak is almost doubled, if

Fig. 8.20 High-level preliminary Simulink® diagram for the electro-thermal IPS

Fig. 8.21 Preliminary Simulink® diagram for the control and monitoring of electro-thermal IPS
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compared to previous one. This is a typical dynamic effect, which cannot be
evaluated by the sizing model. Power is the sum of several contributions and the
average value is never zero, because of the continuous heating process, which
motivates the power trend, never starting from zero.

In Fig. 8.24, the ice melting rate for the considered zones is shown. The peak is
about 0.16 mm/s, considerably high if compared to a typical accretion rate. The
melting efficiency is high and the ice is reduced, after a small number of activation.

The accretion rate is, actually, an order of magnitude lower than the melting one.
Estimations obtained from models indicate 0.05 mm/s, in case of the Appendix O
environmental boundary conditions and 0.012 mm/s, considering the Appendix C
(EASA, 2017).

Requirements traceability within the Physical Analysis is an effective process
aimed at assuring the consistency of data, with the functional modelling, especially
considering the satisfaction dependencies of the Logical Analysis, and at preparing
the verification activity. Linking requirements to physical model elements helps to
identify where they will have a relevant impact, in terms of allocation, and to verify
their compliancy.

The Simulink® and DOORS® can be interfaced by enabling some embedded
features of Verification and Validation toolbox (Mathworks, 2014). This allows to
navigate the SRS, which remains stored in the DOORS®, directly from the
Simulink® environment, linking the requirements to every model element. As an
example, it is possible to consider the requirement related to the maximum power
consumption. The requirement 133 originally fixed a maximum power peak of
65 kW, thus allowing a sort of tolerance of about 20 kW over the derived results,
obtained through the sizing model. In this case, the power peak derived by the
dynamic model is about 70 kW, which is no longer acceptable. This requirement
was originally allocated on the main logical block of electro-thermal IPS, but, now,

Fig. 8.22 Final aspect of the Simulink® model for actuation of the electro-thermal IPS
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it is possible to locate the source of problem within the physical model. It is the
power signal coming out from the heaters and constituting the main output of
Fig. 8.10 (red on the right). Therefore, an output number 5 of actuation subsystem
of the electro-thermal IPS model violates the requirement 23. Some solutions can be
applied, to fit that requirement. The electrical inductance of components can be
changed, to reduce its electrical inertia to the variable current fed. The system can
be differently designed, to find a better timing or a more suitable value of specific
power, for heaters. Figure 8.25 shows the typical window of the software tool,

Fig. 8.23 Power trend over the activation sequence for the electro-thermal IPS

Fig. 8.24 Ice melting rates for the different aircraft zones, for the electro-thermal IPS
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where requirements can be navigated and the connection with physical model
element is built. Blocks and requirements are highlighted automatically, to show
when the link is active.

Dynamic model for the pneumatic IPS based on inflatable boots. This model
is aimed at assessing the deicing efficiency of the pneumatic IPS, based on inflatable
boots. It evaluates also the power consumption and the dynamic behavior of boots.
The control strategies to actuate the boots are even verified, during the simulation.

The approach used to implement the model is very similar to previous one,
applied to the electro-thermal IPS. It includes some phases, namely, the prelimi-
nary, detailed and requirements implementation. The same tools are exploited and
the same rules concerning the format of data coming from the Logical Analysis
(IBD parts, stereotypes and ports) are applied.

This example points out how the hand-off between the Logical and Physical
analyses is performed. Few modifications have been applied to the IBD, to perform
the simulation. Figure 8.26 shows the high-level diagram for the pneumatic IPS, as
imported in Simulink®.

It looks similar to the diagram of the electro-thermal IPS. The distribution
system is different, since it applies a pneumatic power source, and the control logics
is here adapted to the test case. In Fig. 8.27 the distribution sub-system is detailed.

The main command switch is connected to the distribution line, because a
shut-off valve is used to activate and de-activate the pneumatic system. The airflow

Fig. 8.25 Requirements allocation within the Simulink® environment
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is sent to boots. Depending on the selected cycle and control law, the status of each
boot is identified. The power consumption to break the ice is evaluated and com-
pared to airflow and pressure required to increase sufficiently the volume of boots.
The ice sensor is connected to the control system, to send the required information
about ice thickness. The structure of boots can be detailed and their architecture can
be prepared for the Physical Analysis. This is done because some mathematical
issues will be added, needing some refinement of the model configuration and of
ports layout. Figure 8.28 shows the preliminary Simulink® model of boots of the
pneumatic IPS.

Fig. 8.26 High-level preliminary Simulink® diagram for the pneumatic IPS

Fig. 8.27 Preliminary Simulink® diagram for distribution and actuation subsystems of the
pneumatic IPS
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Each boot receives a continuous signal, which is a physical entity, as the airflow
(in kg/s) and a discrete signal, being the control input, which triggers the actuation.
Boots are then characterized by a status, which identifies the working condition, as
well as by the requested power and volume, varying during the activation cycle.

Switching to the detailed phase in Simulink® view, it is possible to look at the
main diagram, as specified by Fig. 8.29.

In this case, the elements specified by the original IBD can be easily recognized,
although they appear organized in a different way. Controller (light blue on the left),
valves from the distribution subsystem (pink in the center) and actuation boots (on
the right) constitute the core of the diagram. Moreover, the distribution system is
further detailed to characterize the DDV assembly, as shown in Fig. 8.30 for wing
and horizontal stabilizers.

As it can be seen, the orange blocks, representing the DDVs, are controlling the
airflow by a sequenced actuation, implemented through a series of conditional
operators. Even boots are characterized by a second order mathematical derivative

Fig. 8.28 Preliminary Simulink® diagram for boots of the pneumatic IPS
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Fig. 8.29 Final aspect of the main Simulink® model for the pneumatic IPS
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Fig. 8.30 Final aspect of the Simulink® model for the DDVs of the pneumatic IPS
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equation, like the very well-known mass-spring-damper model. Main targets of the
analysis are here the inflation rate and the volume evolution (Fig. 8.31).

Considering the numerical simulation, performed by running the detailed model
just observed, it is possible to proceed as for the electro-thermal IPS. The trend of
main variables can be provided as a function of time. Variables here analyzed are
different, because the system dynamics is explored. The ice melting rate, related to
the braking action of boots, in nominal conditions is very high. This makes rather
difficult using charts to analyze this specific variable. Power consumption, volume,
air flow and pressure trends are analyzed, as results of the dynamic model simu-
lation. Figure 8.32 shows, for instance, the trend of pressure.

Relative pressure is regulated and controlled almost in real time, in inflation
(1.4 bar) and in deflation (−0.3 bar). This is not possible for the airflow, which
exhibits a certain time delay, especially during the deflation. A maximum peak of

Fig. 8.31 Final aspect of the Simulink® model for a boot of the pneumatic IPS

Fig. 8.32 Pressure trend for the different boots of the pneumatic IPS
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about 0.03 kg/s (Fig. 8.33) is found. Rates are saturated, when they reach a defined
threshold.

The trend of volume depends on the airflow and on the applied pressure. Results
are shown in Fig. 8.34. Values are once again saturated, because of some limita-
tions of the rubber material, occurring when a threshold value is reached.

As it can be observed, wing boot is the biggest one, with a maximum volume of
0.03 m3. The power chart looks relevant. Figure 8.35 shows the first activation
cycle and the beginning of the second one.

Fig. 8.33 Flow rates for the different boots of the pneumatic IPS during actuation

Fig. 8.34 Volume trends for the different boots of the pneumatic IPS during actuation
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The maximum peak is about 13 kW and is reached by wing boot B. The first
actuation shows a lower value, if compared to the following ones. This is clearer if
three cycles are examined (Fig. 8.36).

During the first actuation, this boot is the first to be inflated, but later, the last
boot actuated is deflating, while the first one is inflating again. A superimposition is
generated, causing the higher value of power detected, which is not the highest one.
As it happened for the electro-thermal IPS, this detail could not be captured by the
static models, while the dynamic simulation is suitable to find these phenomena.

Fig. 8.35 Power trend for pneumatic IPS actuation

Fig. 8.36 Power trend for pneumatic IPS actuation
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Considering the requirements allocation phase, a similar approach can be fol-
lowed to connect the model elements to the SRS. The power level is fitting the
requirement 23, already applied to the electro-thermal IPS. An additional feature of
the Simulink® traceability tool is the generation of reports, which include the
system requirements. This possibility allows highlighting the model elements
including some statements, which provide a clearer perception of link between the
SRS and the dynamic model. As an example, Fig. 8.37 shows the report generated
for the dynamic model of the pneumatic IPS, where links to the SRS objects are
expressed for each model element.

Fig. 8.37 Summary of traceability links among requirements and Simulink® model elements
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8.7 Results and Final Considerations About the Physical
Analysis

The Physical Analysis somehow concludes the path shown for the two test cases. It
provides a complete characterization of the physical behavior of the system pre-
viously determined, in terms of architecture, through the sequence of Operational,
Functional and Logical Analyses. All along the process, requirements have been
updated and their allocation has been evaluated, in terms of satisfaction and, where
possible, verification through models.

The suggested approach is intensively recursive, since it consists in multiple
exploitations of the design process, from high to detailed level, from system to
component level. In this handbook, just a single run has been shown, although in
both test cases, system, subsystems and components have been considered.

Physical modelling is extremely wide and cannot be summarized in the context
of this handbook. The main aim is here showing some details of the formalisms and
of the implementation performed within the frame of the industrial production, as
the systems described by the examples show. A key issue is the connection between
these analyses and logical one, constituting a seamless MBSE design approach.
Above all, allocation and traceability properties are assured from the logical
architecture to physical simulation. Particularly, the examples show some of the
most typical models used within the simulation of mechanical and aerospace sys-
tems, although many others could be introduced, applied to several technical
domains. The implementation is performed within a proprietary environment, as a
stand-alone format. A connection with the requirements database is made by some
connectors, already available out-of-the-box for the aforementioned software, as
embedded features.

As the next chapter shall describe, this is a simplified view of the physical
modeling, still far from a complete interoperability among the analysis tools. In
fact, considering the multidisciplinary fields encountered during the design of such
complex systems, many tools are generally used to study specific peculiarities from
different point of views. Engineering domains are traditionally prone to exploit
some typical toolchains, composed by some software conceived for specific pur-
poses. Their integration is still an issue, especially when tools were not originally
conceived to communicate. Often the interoperability among tools is a required
enhancement to empower the entire process, allowing also the exchange of data
among different disciplines and people.

Next chapter shall focus on a heterogeneous simulation approach, which allows
integrating, with many possible strategies, model elements directly within a host
environment, able to act as a sizing or dynamic model. The goal is reducing as
much as possible the workload required for tuning data, when switching from an
environment to another one, In Chap. 9 strategies and limitations of the interop-
erability among software are explored and an alternative approach to implement the
Physical Analysis just described is investigated.
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Chapter 9
Heterogeneous Simulation

Abstract As a matter of facts, interoperating tools and integrating the functional
and physical modeling of systems within a unique toolchain is one of the most
challenging issues of the Systems Engineering technology as is currently known.
Therefore, this topic is analyzed in this chapter, one that the set of analyzes required
was performed. Strategies, tools, limitations and benefits of the heterogeneous
simulation are here analyzed, even through the two test cases.

9.1 Introduction

As it was discussed in previous chapters, the MBSE is currently the most effective
approach to assure the traceability of data, in design activity, especially when a
toolchain of software is exploited. However, the wide availability of commercial
tools, conceived to provide different capabilities within several domains of engi-
neering, leads very often to some incompatibility problems. This is well-known,
since tools are seldom designed to communicate with each other. Therefore, an
issue for the MBSE implementation is the so-called interoperability. It turns out, in
this context, into a capability of software to share some data with other software,
through a standard form, to allow the user working and accessing to those data, by
the toolchain. A low degree of interoperability could be the most critical bottleneck
in implementing the model-based design process.

Several integration strategies can be selected to raise the level of interoperability
of a tool, depending on its features and the goal of the analyses performed. Many
software tools use some connectors or adapters, expressively designed to allow the
direct communication with other ones. Otherwise, a suitable integration is required.
Very often the user must develop some import/export connection between tools,
when their interoperability is not yet provided by vendors.

Unfortunately, within the MBSE there is still nowadays a high heterogeneity of
tools, and integration capabilities need to be provided. Some standards for model
exchange are already available and help the user to overcome the difficulty of
resorting to the point-to-point connectors.
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Some basic concepts and examples about this topic are proposed in following
sections. To simplify the discussion, only the industrial test case is exploited to
show some examples of software integration, through the interoperability tools and
connectors.

9.2 Strategies of Model’s Integration Within
the Heterogeneous Simulation

Engineers are usually prone to use very specific software, developed within some
specialized technical domain, which characterizes their expertise. These tools
enable an effective implementation of the analyses to be carried out, and often
benefit of a consolidated tradition of that domain of application. For the user
changing the modeling approach to implement the MBSE often looks rather diffi-
cult. Moreover, sometimes changing the tools is even required, when a large
toolchain is considered. In addition, the introduction of several layers of analysis, as
it is done when resorting to the Operational, Functional, Logical and Physical
modeling, might excite a certain resistance of operators. The interoperability of
tools becomes a strategic mean to avoid all the drawbacks of that change, since it
allows connecting the software tools traditionally applied to the quantitative design
and the new ones, aimed at enabling the functional modeling.

Forcing the user to master a completely new toolchain is impractical, even
because of waste of time and resources for training. Moreover, in large industrial
consortia it may be required to interface different tools, to perform the same kind of
analysis, because of legacy of each partner. Therefore, adapting the toolchain to
support this methodology, through the interoperability of tools is the strategy most
applied. In this way, each user may continue working with known tools, just
enriching the chain by adding some other ones to enable the development of other
analyses, and sharing data with other specialists. Simultaneously, the models
exchange and the collaboration within the design activity are both improved.

The so-called heterogeneous simulation is expressively aimed at integrating
models in another environment, able to host them. It makes seamless the tools
integration, since the user navigates through them quite easily. The workload of
operators is usually reduced and synergy is improved.

The interoperability effectiveness strictly depends on the software tools inter-
connected, on the analyses to be performed, and on the toolchain designed case by
case. Some strategies can be identified among various possibilities proposed by the
software engineering, shown in Fig. 9.1.

Replicate model structure. This is a basic approach to integrate models. It is
based on the exchange of entire models, from source to target software, respec-
tively. This strategy allows replicating the original model in another environment,
with a reduced workload for the user, since data are compatible. All the features of
the original model are maintained. This strategy can be exploited following two
implementations, herein described.
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• Point-to-point connectors—this is the simplest way to exchange an entire model.
It is based on some dedicated import/export facilities. The source tool exhibits
some integration capabilities with a selected list of other ones, able to accept its
data (Fig. 9.2). In this case data do not need to be represented in a standard
format, being just compatible with the target tool, eventually through some
proprietary algorithms able to reorganize their formalisms. The model exported
in the target tool is a representation of the original one, although its formalisms
is adapted to the hosting environment. Practically speaking, the data exchange
process is a sort of translation. This solution is generally implemented as a
synchronization activity. Model elements shall be updated, in case of modifi-
cation, to keep the consistency between environments. Replicability issues may
generally arise, when performing the synchronization, because the number of
formats supported for the data exchange may be limited. Often the target tool
does not support the formats of the source tool. Therefore, a specific connector
is developed. The reliability of adapters as well as the stability of the exchange

Fig. 9.1 Strategies for models integration

Fig. 9.2 Mathematical model synchronizer within the PTC modeler® traducing IBD in the
Simulink® model

9.2 Strategies of Model’s Integration Within the Heterogeneous Simulation 273



www.manaraa.com

process may be an issue. Unexpected crashes or incompatibility issues among
different versions and releases of software may be found.

• Interoperability standards—the tools integration strategy can be implemented by
resorting to some interoperability standards, to overcome the need of specific
point-to-point connectors. The strategy is similar to previous one for the inte-
gration process, performed through the synchronization of data. The translation
is here no longer required, since data are formatted in a standard way, before that
they are exported. The target tool is able to understand this format, never
requiring any recompilation. Some other differences are here highlighted. Since
this approach considers the exchange of the entire model, sometimes this can
appear as a black box (Fig. 9.3) in the hosting environment. The interoperability
standards often allow protection of data, therefore the exported version of the
model allows accessing to variables only, but the internal algorithms are never
disclosed. This is very important as far as the cooperation among many partners
is concerned and the need of protecting the intellectual property, upon some
classified information, arises. The exploitation of standards significantly raises
the process stability, enhancing the quality of the synchronization and providing
a higher replicability. A major drawback is that both the tools must support the
standard. However, advantages are considerably larger than those limitations.
Therefore, this technique is highly recommended, when applicable.

Share model elements. This approach works directly on the model elements.
The model is interpreted as an instance, composed by various parts, which can be

Fig. 9.3 Import of standardized unit in Simulink®
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considered separately as independent elements, with specific interfaces, that allow
them communicating with other ones. This strategy assures higher flexibility and
portability of the model exchange process, being focused on smaller elements,
potentially usable within different scenarios. The implementation solutions envis-
aged are the same of previous techniques. Dealing with smaller parts affects the
effectiveness, usually raising the level of reliability of this approach. Model parts
are supposed to work independently, when properly connected, isolating specific
sections of the behavior of the entire model. This detail is very interesting for the
model verification and validation.

• Point-to-point connectors—this solution is the same of that above described, but
objects to be synchronized are smaller, and the process reliability is considerably
higher (Fig. 9.4). This trend is motivated. The entire model is made of different

Fig. 9.4 Export of model elements from the Rhapsody® to the Simulink®
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levels, being characterized by an internal structure, which is like that described
within the BDD and IBD. Thus, several dependencies among interfaces and
links shall be synchronized. In case of elemental model parts, the focus is on
simpler structures, with reduced number of interfaces, ports and connectors.
This makes easier the translation process, reducing also the errors due to
unsupported formalisms.

• Interoperability standards—this is the most effective implementation, since it
allows the maximum flexibility and a larger replicability. Re-usability is also very
high, since model elements can be exploited for different simulation scenarios
(Fig. 9.5). Problems related to the black box of the exported objects are here less
important, since the percentage of hidden elements is lower. This means that, if a
new model is created in the target tool, with proprietary formalisms, and some
parts shall be received via standard from a source tool, the model structure can be
still navigated, although the model elements imported are hidden.

Fig. 9.5 Inclusion of a standardized unit within a proprietary Simulink® model
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9.3 Example of Interoperability Standard: The Functional
Mock-up Interface

The Functional Mock-up Interface (FMI) (Blochwitz et al., 2011) is a tool inde-
pendent standard conceived to ease the model exchange among dynamic models,
supporting also some co-simulation capabilities, through the combined use of XML
files and compiled C-code. Born under the supervision of automotive industries, to
face the problem of integrating many proprietary tools, and of reusing algorithms
for early validation of results, it is now a de facto standard also in other engineering
domains. The FMI (FMI, 2017) is based on two main concepts:

• The implementation of a component able, to enclose the proprietary formalisms,
supporting, at the same time, the related interfaces, called Functional Mock-up
Unit (FMU)

• The separation of two actions as the description of data to be interfaced (through
XML files) and of the code functionality (binary, C-code).

The FMU is a sort of ZIP file, containing the XML and the binary, being fully
characterized and exportable. It represents the core of the original model from
which it derives. It can be simulated as a stand-alone component, in a different
environment, supporting the standard. The first version of the FMI (1.0) was
released in January 2010 supporting the Model Exchange approach (ME). In this
case, the FMU contains the model generated within the original environment, but
the solver used for the final simulation belongs to the host tool. Another subsequent
strategy, referred to as Co-Simulation (CS), couples two or more simulation tools
(slaves) within a third environment (master). Slaves contain the original models as
FMU, but they are solved independently by their original solver. Master algorithms
only control the data exchange and the synchronization of slaves. Figure 9.6
summarizes the two approaches.

Co-Simulation scenario offers different possibilities, in terms of implementation
on a IT infrastructure. The second process represented in Fig. 9.6 shows only the
stand-alone scenario, i.e. a simulation performed within the master tool, that

Fig. 9.6 Schematic of model
exchange and co-simulation
FMI (FMI, 2017)
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contains all the FMU (slaves). However, this is the simplest deployment of software
architecture. Often, there is not the possibility or the will of integrating the whole
scenario in a single tool, and master/slaves configurations may differ. For example,
it is possible to keep the software applications performing master and slaves,
running in parallel, in different processes. In this case, a sort of wrapper is necessary
within the master process, to integrate the data coming from the slaves, although the
rest of the architecture remains the same (Fig. 9.7).

Moreover, if the software architecture is distributed among different clients, a
more complex scenario shall be envisaged (Fig. 9.8). In this case, an additional
communication layer is necessary to handle the communication, based on a session
server, managing the simulation scenario.

Considering the simplicity and the effectiveness of this standard, several tool
vendors have added dedicated features in their product to support, partially or
completely, these capabilities. Its successful spread is also due to the open speci-
fication, which is provided as a free resource, potentially upgradable and modifi-
able. CAD, software for dynamic simulation, multi-body analyses and many others
have included import/export facilities for FMI standard, either as embedded feature
or through third party connectors. At present time, more than 100 software are
supporting the standard, which has been updated to version 2.0 in July 2014.

Following sections provides an example of implementation of the stand-alone
process applied to the IPS case study.

Fig. 9.7 Schematic of co-simulation with different processes running (Blochwitz et al., 2011)

Fig. 9.8 Schematic of Co-Simulation for a distributed simulation scenario (Blochwitz et al.,
2011)
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9.4 Implementation of the Heterogeneous Simulation
in the Ice Protection System Case Study

The IPS case study offers a lot of possibilities concerning model’s integration and
the exploitation of an heterogeneous simulation. To describe the scenario, several
models may be required to represent not only the system behavior, but also the
operating environment (atmosphere, ice building physics). Moreover, a further
subdivision of the model can be implemented, simulating what really happens in an
industrial context, where specialists designing a system are focusing on very
specific issues. Some separated models can be hypothesized for the actuation,
control and detection subsystems. The mission profile shall be included as well to
characterize the behavior of the entire aircraft.

Following sections are conceived to provide an overview of the main models
involved within the heterogeneous simulation approach, applied to the IPS case
study. Types, proprietary software from which they are built and integration
strategy, based on FMI standard, are mainly focused.

9.4.1 Models for the Ice Protection System Scenario

This scenario is based on 12 models, combined within a host tool as a FMU.
Simulink® is acting as a main hub for models, which are built in the Matlab®,
Rhapsody®, Open Modelica® and Simulink® as well. Successful integrations have
been proved with Dymola® (CRYSTAL, 2017) Simulation campaigns have been
performed with both the Model Exchange and Co-Simulation FMU. Details about
the models implemented are listed hereafter, following the logical order of vari-
ables, which flow among them.

Mission profile model. This model is conceived to provide altitude and speed
profiles of the aircraft, during the mission. Considering the time supposed to per-
form the mission, several phases are defined and, notably, taxi out, take-off, climb,
cruise, holding, descent, approach, first landing attempt, go-around, second landing
attempt and taxi in. It is based on a Matlab® script and implemented in Simulink®

through the proprietary S-Function. Optional outputs can be provided as well, like
vertical speed, fuel consumption, or load factors, but they are not required for the
scenario of the IPS. This model does not require any input, since it is the starting
point for the whole analysis.

Atmosphere model. The air model is based on the International Standard
Atmosphere (ISA) data for what concerns density and viscosity trends. It requires
the altitude as an input, to compute the related profiles. As for the mission profile
model, it is based on a Simulink® S-Function implementing a Matlab® script.

Temperature model. The air model may potentially include also the tempera-
ture profile, following the ISA data. However, temperature profile is computed
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separately by an Open Modelica® look up table. The working principle is the same,
thus based on the altitude as an input, but the source code is different in terms of
generating environment.

Liquid Water Content (LWC) model. This model implements the LWC trends
described within CS-25 (EASA, 2017) appendixes concerning supercooled water. It
is based on a Matlab® script, which receives the value of temperature during the
mission to identify the correct LWC level, considering that the whole mission may
be subjected to icing conditions. It is then implemented, as mentioned before,
through an S-Function in Simulink®.

Monitored Temperature model. This is a simple algorithm to simulate the
noise generated by the temperature sensor, which receives the real temperature
value and computes a result affected by a random error. This value is sent to the IPS
controller, which regulates the power intensity, depending on the measured tem-
perature. The model is implemented through a random noise generator built in
Open Modelica®.

Ice creation dynamics model. Depending on the density and viscosity of air,
the LWC and the speed of the aircraft, received respectively from atmosphere
model, LWC model and mission profile model, it is possible to compute the ice
build-up on the airfoils. The model considers the characteristics of droplets, which
can be derived from the environmental conditions specified by the input, and the
related dimensions to derive the impact area and the accretion rate (in m/s). This is
the main output of the model and will be compared to the melting rate provided by
the IPS to derive the actual ice thickness present on the aircraft zones. One model is
built for each zone, so, four units are implemented (wing, horizontal stabilizer,
vertical stabilizer and engines). Models are coded directly in the Simulink®.

This first group of blocks is shown in Fig. 9.9, where the FMU built from the
original models have been imported in the Simulink®.

Ice accumulation model. This is a very simple model, summing ice accretion
and melting rates to compute the ice thickness level. However, it is a fundamental
brick of the simulation, since it generates the input required by the IPS controller.
Depending on temperature and ice thickness, of the aircraft zones, the controller
regulates the power of the IPS, to either increase or decrease the intensity of melting
rate. The output of this model, i.e. the ice thickness (in meters), is then used as a
main feedback signal to trigger the system. The model is built through some
Simulink® blocks.

Monitored ice thickness model. Similarly to what was done for the tempera-
ture, even the ice thickness signal coming from the ice accumulation model is
combined with a random value to simulate the sensor noise. The output is a value
characterized by an error, proportional to the random noise, which is used by the
controller to regulate the ice melting efficiency. Blocks are implemented in similar
way, through the Open Modelica® random number generators, being customized to
match the ice thickness typical values. Again, since four zones are accounted
separately, for the ice accretion, four models for the monitored ice thickness are
included, within the simulation scenario.
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IPS model. The IPS model depends on the type of system simulated. However,
for both electrical and pneumatic IPS, it is made of three execution components:

• Control model—it receives the data concerning the monitored ice thickness and
temperature, to induce timing input to the sequencer. For electro-thermal IPS the
so-called cycle time is referred to the heat on period of a single zone, whilst for
the pneumatic IPS it provides information about the switch off period at the end
of cycle, in case of complete ice elimination. The model is built through a
discrete event based state machines, developed in the Rhapsody®. These could
be interpreted as an evolution of those implemented within the functional
analysis for the control use case.

• Sequencer model—this model establishes the timing relationships for the
actuation of the different zones, using the cycle time value received from the
controller. Actually, it is still a sort of controlling mean, although, in case of
electro-thermal IPS, it provides also the trigger for power regulation. The main
output is the activation signal to the different zones, for both cases. Together
with power regulation, as far as electro-thermal IPS is concerned, the model
receives directly the monitored thickness for the wing. This is implemented to
reduce the heat-off period of non-wing zones, in case the ice build-up on the
wing is negligible. The wing has the highest number of zones, thus requiring a
lot of time to complete the whole cycle, causing a high inter-cycle ice accu-
mulation on other ones. This model is implemented in the Rhapsody®, as a
statechart, like the previous one.

Fig. 9.9 FMU related to mission and environmental data implemented in Simulink®
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• Actuation model—this model is strictly dependent on the type of IPS used. It is
the core of the whole simulation and may differ very much, depending on the
selected case study. It receives the activation input for the different zones and the
cycle time. Moreover, to take into account the effects of temperature on the
melting efficiency, the real value of the Static Air Temperature (SAT), i.e. the
value computed by the temperature model, is provided. In case of
electro-thermal IPS, the specific power established by the sequencer is also
required as an input. The main outputs are related to the activation of zones, the
global power level and the ice melting rates for each zone. Melting rates are
compared to the accretion rates, within the accumulated ice models to derive the
ice level. Power signal is the main output of the model and, optionally, can be
connected to the energy model, which integrates the signal to derive the total
energy used to deploy the IPS. Those models are built with Simulink®

formalisms.

Energy model. it is a simple integrator, built in the Open Modelica® to derive
the total energy consumed, during the mission, to activate the IPS, starting from the
power trend provided by the actuation model.

Figure 9.10 shows the final model layout, implemented in the Simulink®, using
FMU only. Particularly, the electro-thermal IPS scenario is shown.

Fig. 9.10 Complete FMU scenario implemented in Simulink®
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The results of the simulation run for both electro-thermal and pneumatic IPS are
reported in the next section.

9.4.2 Simulation Results and Final Run

The main results obtainable from these models concern the power consumption and
the ice thickness level. Other kind of results can be computed, as it was for the
stand-alone Simulink® models, coming from the architecture of the logical analysis
(Chap. 7), like power per each zone, volume of boots (for pneumatic IPS), accretion
rate etc.… It is very important to look for computation problems, compatibility issues
or numerical glitches, since models integration may lead to unexpected behavior.
Basically, results coming from the heterogeneous simulation shall be compliant with
those derived through the classical modeling approach to be considered reliable. The
model validation is then fundamental, prior to analyze the results.

Electro-thermal IPS. As it can be appreciated in Fig. 9.11, showing the power
trend for the electro-thermal IPS, results confirm the contents of Fig. 8.24 (Chap. 8).

The maximum power peak around 70 kW is confirmed. However, peaks are a
little bit different, from the point of view of the wave form, and continuous power
level is also different. This is due to the action of the controller, which regulates the
intensity following the environmental conditions. This kind of algorithm was not
included in previous model, thus making the difference clearer, also in terms of
secondary peaks layout. The power peak is compliable, proving the correctness of
the model, in both cases. The considered time interval represents the first sequences
following the activation of the system, occurring when the ice thickness exceeds a
certain threshold. Actually, the ice thickness evolution during the mission can be
described, as in Fig. 9.12.

Fig. 9.11 Power consumption for the electro-thermal IPS derived from heterogeneous simulation
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The accretion and melting rates, combined together, show that the ice thickness
remains under the threshold specified by the requirements although, in some cases,
it is not possible to completely melt the ice. In this case, the whole mission is
considered.

Pneumatic IPS with inflatable boots. Similar results can be obtained for the
pneumatic IPS. However, since the system behavior is peculiar of the technical
solution applied, trends are different, if compared to the electro-thermal case study.
Figure 9.13 shows the power trends, for a time interval similar to that depicted in
Fig. 9.11.

Fig. 9.12 Ice thickness evolution for electro-thermal IPS derived from heterogeneous simulation

Fig. 9.13 Power consumption for the pneumatic IPS derived from heterogeneous simulation
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In this case, the magnitude of higher peak is similar to the value derived through
the classical modeling approach, but the wave form is quite different. Basically, the
dynamics is faster and the boots appear inflating/deflating with a higher speed. This
remark is a consequence of observing that power peaks are thinner during the
activation sequence. This effect is due to the inclusion of the mission profile within
the simulation scenario, which brings some variables like atmospheric density and
aircraft speed, which affect the behavior of the rubber boots.

The ice evolution during the mission is very different from the electro-thermal
case study. As Fig. 9.14 shows, in nominal conditions, the effectiveness of the
pneumatic system is very high in terms of ice elimination.

At each actuation, the ice thickness level drops to zero, because of the expulsion
of ice layers caused by the inflation of boots. Also in this case, the ice thickness
level is compliant with requirements.

9.5 Traceability and Future Evolution
of the Interoperability Within Large Toolchains

As far as the heterogeneous simulation is concerned, one may ask how long it is
possible to maintain the traceability of different elements involved. Actually, the
proposed implementation follows the strategy based on sharing model elements,
thus relying on small model elements instead of focusing on the entire formalism.
The FMU is generated from the original model, at a certain time, and versioning of
the objects and backward synchronization are not possible. However, when the
FMU is created again, for example after a modification, the host environment is

Fig. 9.14 Ice thickness evolution for the pneumatic IPS derived from heterogeneous simulation
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capable of reloading the FMU with the new version, without modifying the sim-
ulation environment. Moreover, FMU has the possibility of storing data like version
number, originating tools, author and date of the modifications, easing the trace-
ability process. The idea is that updated processes shall not be impacted by the use
of the standard to represent the simulation, i.e. the user shall not modify his way of
working, but a proper structure of the database or of the results folders shall be
instantiated to be fully reusable.

Requirements traceability is not subjected to change. Considering the provided
example, the simulation environment (i.e. Simulink®) is still capable of accessing
the DOORS® database, for linking objects to the SRS. Nothing changes from the
point of view of requirements allocation on model elements, although a higher level
is considered since, being impossible to navigate the models within the FMU,
requirements are allocated on the black boxes representing the model elements and
never on components or signals.

The traceability process of both requirements and models can be very difficult in
case of complex IT infrastructures. As explained before, for what concerns a dis-
tributed simulation scenario, resources may be stored in servers and not be
accessible locally. The examples described in this chapter are fairly easy and refer
to the local instantiation of this approach. The elements used consist in available
resources that are organized through a simple file system structure, whilst re-
quirements are stored in the DOORS® database that, in any case, is still on the
client machine where models are built.

When considering a wider toolchain or larger company infrastructures, it is more
convenient to rely on linked data resources instead of accessing directly the objects.
Other kind of standards are available to exploit linked data strategy, to access
resources through their links, made available on a secure network within a dis-
tributed infrastructure, even for simulation and visualization of results in real time.
It is worth citing one successful example of interoperability standard, largely
applied within model-based design, known as Open Services for Lifecycle
Collaboration (OSLC, 2017). OSLC is an open community building specification
for software integration aimed at connecting workflows and environments over the
entire product lifecycle. It is divided in several working groups focused on, as
example, requirements management, quality management and architecture man-
agement as well as lifecycle and linked data patterns. The main objective is
exploiting linked data to make resources available among different software for
analysis and navigation. The most important and known tasks that can be performed
using these standards are the configuration change management, performance
monitoring and embedded systems design. The main idea is relying on URL to
access the results through multiple tools, basing the specification on internet
standards, thus re-using already available technology. As the FMI, the OSLC is an
open standard, thus being freely available on the web. The community was pro-
posed in 2008 and now it lists more than 60 software platforms supporting this
standard, connecting ALM and PLM and successfully linking the different phases
of product development. Some of the tools used within the examples are already
supporting the OSLC specifications.
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This subject is a little bit far from the scope of the handbook, but the Reader can
realize the importance of IT solutions to support the MBSE approach, especially
considering the connection between ALM and PLM, as well as the interoperability
issues related to their effective cooperation. A very brief introduction to the problem
was then considered appropriate by the Authors. Nevertheless, it is recommended
referring to some more specific literature about the implementation and current
exploitation of this technology, to analyze deeper this topic.
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Chapter 10
System Verification and Validation (V&V)

Abstract A preliminary overview on the connection between Application Lifecycle
Management and Product Lifecycle Management is proposed, by introducing the
contents and the strategies of the Verification and Validation activities. The chapter
should allow the Reader distinguishing the two activities and even the tools and the
goals related. A comparison between the typical approaches applied in Software and
Hardware Engineering, respectively, is briefly deployed. A preliminary relation with
the RAMS analysis, dealing with Reliability, Availability, Maintainability and
Safety, is discussed, especially in the two test cases.

10.1 Introduction

The SE deployment leads to a final manufacturing of prototypes and products, and
the wide modeling activity developed to perform the product design shall be
effective as much as the system fits requirements and brightly fulfills the customer
needs. Those are, briefly speaking, the main goals of verification and validation,
respectively, as they were already defined in Chap. 3.

Looking at the whole product lifecycle, a sort of inner loop is established
between requirements and system. It is based on a two ways path. The requirements
allocation and the system development, production and integration, describe the
direct activity performed to build the product, while the verification allows a
feedback from the system to the requirements. An outer loop even holds and
connects the system to the customer needs. It includes the previous one, but it is
extended to a comprehensive check that all the needs are satisfied (Fig. 10.1).

To understand the proposed roadmap it is crucial realizing that, as soon as the
product is delivered, the customer satisfaction is manifested by an explicit accep-
tance. To be sure that this agreement could be reached, the system developer should
perform a back path to verify the system against requirements and validate it against
the customer needs. Practically, it is often said that the product development suc-
ceeds if its main goal of providing an effective system is reached. It sounds
somehow obvious and intuitive, provided that the meaning of system effectiveness
is completely stated.
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Actually, verifying and validating the system and checking its real effectiveness
include a number of items, which sometimes make confusing their description in
the literature. After the first action of delivering a final design synthesis of product,
seen as a main output of the ALM step of the whole product development, the
verification and validation (briefly V&V in the following) should assure a suitable
system manufacturing, through a precise quality and configuration control. A clear
consistency with the project targets must be even guaranteed. Therefore, the V&V
process is strictly connected to the model of development assumed, as in the V-
diagram sketched in Fig. 10.2. Basically, the V&V activities belong to the right side
of the diagram. Verification operates on the system models, parts, components,
subsystems, by resorting to several tools like simulation, tests, measurements,
prototypes and proofs, while the system validation is performed on the whole
product and may lead to a complete homologation or at least an accreditation of
some external certification authority.

Very often the V&V process to be implemented doesn’t look so bright at the
beginning, especially when the system manufactured is new, or quite different from
previous ones. Therefore, demonstrating that the model is representing exactly
“what we thought” (verification) and the product is exactly “what we need” (val-
idation) is never trivial. It might happen that driving a V&V activity seems more
difficult than the design itself. This could be the weak ring of an ideal chain between
design and manufacturing, or between the ALM and the PDM, within the frame of
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Fig. 10.1 A roadmap of activities related to the V&V
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the PLM. Moreover, contents of V&V are still a little bit vanishing in the literature
of material systems (hardware and constructions), while they were already assessed
within the software engineering.

In this chapter an overview of the V&V process is provided, just to give a
preliminary impression of the state-of-art as well as of some known roadmaps
currently applied. It is clear that a deeper information should be analyzed for a
direct implementation, but at least some main features of the V&V process and
typical interactions with the MBSE methodology will be preliminarily drawn.

10.2 The Best “V&V” Process

As a methodology based on models the core truth of the MBSE consists in the
equivalence between the system behavior predicted by models and the actual
performance in service. Unfortunately, modeling is never so simple and when
complex systems are observed and tentatively replicated in a virtual reality a
number of obstacles might bring to a sudden failure. Basically, every modeler
should face a set of uncertainties. Characterizing and identifying the uncertainties
related to a defined system modeling and evaluating the degree of influence they
have upon the final output is a key issue of this activity. Moreover, uncertainties
exhibit an intimate correlation with the technical domain explored, and this makes
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Fig. 10.2 Evidence of the verification and validation role in the product lifecycle management
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rather difficult generalizing a suitable process of V&V which could fit all of
engineering applications. The best V&V process doesn’t exist, although many
procedures fit-to-purpose for several applications can be assessed. Nevertheless,
some main target objectives are common, while methods and metrics should be
adapted case by case to the nature of system.

An increasing attention of designers, manufacturers, customers and stakeholders
as well as of some technical standards or technical societies (as the ASME in
industrial product design) for a complete assessment of the V&V procedures is now
tangible. The development of complex systems suffers the effect of human errors,
especially when the number of operators is fairly high, and of the number of
variables introduced, being known under a limited confidence level. The V&V
process is aimed at improving the quality of product and reducing the potential
errors of humans (Debbabi, Hassaine, Jarraya, Soeanu, & Alawneh, 2010), as far as
it should be made as standard and automatic as possible. It allows assessing the
system models, design and requirements. Moreover, a V&V standard procedure
avoids a subjective point of view of different operators, and defines common
metrics of evaluation. In industrial product development, it concurs to the final
assessment by resorting to both qualitative and quantitative techniques, as long as it
is based on a real heterogeneous simulation, testing and proofs.

The V&V process should even help in exploring the non deterministic nature of
several phenomena, which motivate a large part of uncertainties affecting both the
system modeling and the product development. It might be remarked that two levels
of knowledge are considered in the V&V methods. A specific implementation to the
system under development is obviously felt as an urgent task of the whole PLM.
Behind that, every industrial domain should promote a complete standardization of
those techniques, to be defined as a reference for the related technical sector,
without limiting their effect on the single product. Unfortunately, nowadays a
comprehensive action to assess the V&V process within the frame of each technical
domain is still going on, but is somehow incomplete as it appears in applied
science, fluid dynamics, heat transfer, solid mechanics, and structural dynamics
(ASME, 2017). Therefore, methods and tools applicable within the context of the
MBSE for industrial systems will be here only roughly described, as they are
currently known and implemented.

10.3 Verification, Validation and Accreditation
(V&V, VV&A)

Concurring with the following official definitions:

• Verification is the “confirmation, through the provision of objective evidence,
that specified requirements have been fulfilled” (ISO15288, 2015) and “is a set
of activities that compares a system or a system element against the required
characteristics. This may include, but is not limited to, specified requirements,
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design description, and the system itself” (Walden, Roedler, Forsberg, Hamelin,
& Shortell, 2015).

• Validation is “the confirmation, through the provision of objective evidence,
that the requirements for a specific intended use or application have been ful-
filled” (ISO15288, 2015) and “is a set of activities ensuring and gaining con-
fidence that a system is able to accomplish its intended use, goals, and objectives
(i.e. meet stakeholder requirements) in the intended operational environment”
(Walden et al., 2015).

A verbal joke is also used to summarize the two concepts. According to it, veri-
fication answers to question “are we building the system right?” as validation does
for question “are we building the right system?” (Shamieh, 2012). This explains
why a complete validation to check whether customer needs are fulfilled is only
possible on the whole system. By converse, when each part, component or sub-
system were modeled and built as it was thought, and simulation, tests and proofs
confirm that their behavior and performance are those expected, they look fully
verified.

To assess the V&V process, some metrics to be applied to evaluate the system
and its compliance to requirements and fulfillment of needs should be preventively
defined and targets should be even clearly stated. Some tools are required to
perform the activity, and they have to assure to be reliable and complete in
operation.

It is worth noticing that within the MBSE approach two products are built or
assembled, namely the system models and physical components. Therefore the
concept of V&V is tailored to be adapted to either of those products. This motivates
a double definition of verification, since it checks that:

• the system model precisely describes the concept thought by designer;
• the product is correctly built up.

By converse, validation is focused on checking the correspondence between the
prediction of system performance, provided by models, and its real behavior.

The output of the V&V activity is either an acceptance or a rejection of the
system as is, with respect to a specific usage. It is usually referred to as accredi-
tation or certification, and is given by a recognized authority, after a preliminary
work performed by the manufacturer himself. When manufacturing of material
product is concerned, this could be even corresponding to a homologation (see for
instance the case of motor vehicles).

10.4 Software and Hardware

The V&V process applies to both software and hardware systems. In case of
software, many issues of the V&V were already assessed, far less in industrial
product lifecycle management. Nevertheless, a brief overview on some typical
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issues of the software V&V process should be useful in introducing some current
interpretations implemented for the hardware.

First at all, the object to be analyzed in software engineering is the code, made
by a list of commands expressed into a programming development environment,
through a standard language. In industrial engineering a material product is usually
evaluated, and requires that even the manufacturing process is included.

A formal V&V of software is based on a static evaluation, which examines the
source code without executing the model (dataflow, control flow, syntactical
accuracy and consistency), and on a dynamic evaluation based on the machine
execution of the model, which resorts to some dynamic techniques, as debugging,
testing, animation. A fault and failure analysis, together with a traceability
assessment, is even performed.

In case of hardware system, a dynamic evaluation is usually required to inves-
tigate its behavior. Numerical simulation is often used to predict the system per-
formance in several operating conditions, and to preliminarily check the fulfillment
of some operational and functional requirements. Testing on parts, components,
subsystems and system is applied to perform the validation. However, a sort of
preliminary evaluation, similar to the static one applied to software, is performed
even in case of a product coming from the material processing. The feasibility of
manufacturing and assembly are tested through some geometric models, or a virtual
animation, and on some prototypes, as well as the dynamic behavior is predicted by
numerical modeling and then tested directly on some samples of the system. More
recently, even the operation of system is checked through a direct interaction
between operator and system, by resorting either to numerical simulators, whose
animation and graphical interfaces allow a virtual engineering activity, or to real
prototypes. In this activity even structural requirements are checked and assessed.

10.4.1 V&V in Software Engineering

Software engineering focuses on structure and behavior. Typical objects of analysis
are the code modularity, hierarchical structure, inheritance, and encapsulation. They
can be related to some more general attributes like complexity, understandability,
reusability, maintainability, and nowadays, even the cyber security. When the
software is undergoing a V&V process, it could be directly tested, i.e. some real or
simulated controlled conditions are set up to verify the operability, supportability
and performance, and results are compared with the expected ones to detect any
errors. The simulation is also used to test speed and computing performance and to
generate several test vectors. A sort of benchmarking between the implemented
model and a reference one is also used to check the equivalence of their behaviors,
within the so-called evaluation process.

No transition between digital and physical model is required for software, since
the product is already a digital artifact. Therefore, the above mentioned activities
are directly performed on the system itself. Nevertheless, the SE languages and

294 10 System Verification and Validation (V&V)



www.manaraa.com

related functional models become useful in representing the structure of software,
through a visual notation, to define attributes and components. Even the behavior
can be effectively described and checked through some diagrams, for instance
expressed into the UML or SysML languages or similar. System interfaces and
mutual interactions between elements can be simulated and the complexity degree
can be evaluated, through some suitable and standard metrics.

To give an impression about the V&V process applied to the software product,
an example is described in Fig. 10.3 as it was conceived by Debbabi et al., (2010)
(see previous page). Inputs are simply the system requirements and properties, and
some behavioral and structural diagrams, being modeled through the UML or
SysML languages. In addition, some applicable metrics and threshold values are
defined.

The process sketched in Fig. 10.3 includes two main action lines: one concerns
the software structure and is depicted on the right side of the flow, while the
behavior is analyzed on the left side. The structure of software is verified by
applying some defined metrics to the structural diagrams and results are checked to
promote any eventual refinement. The software behavior is investigated through a
longer process. Requirements are first expanded into some logical properties, to be
easily used in the preliminary analysis and to create a model. The static analysis
uses some metrics to check the semantic contents of the model and allows a
refinement of it. The dynamic analysis is performed on the execution of the model
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Fig. 10.3 Verification and validation process applied to the software product
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and even on a probabilistic check. Results are analyzed and collected, after an
eventual refinement. The example above described was expressively proposed by
the authors to integrate the MBSE approach with that process.

Technicalities of the above mentioned process are out of the goal of this
handbook, but some typical issues of this approach may be appreciated:

• Several states of the system are considered by the V&V process, being related to
the static and dynamic behaviors.

• A suitable path of activities is defined and implemented.
• Qualitative evaluations are applied to check the structure of the analyzed

system.
• Quantitative evaluations are needed to measure the performance.
• Metrics, thresholds, results and logical operations are used to perform the V&V

process.

A clear understatement about the meaning and the reference parameters of the
product quality has to be carefully assessed. In case of software product, the quality
is related to some attributes to be compared later to those of the hardware product.
They are even considered as an objective of the design activity.

The most important objectives considered in the literature are:

• Cohesion: it measures the strength of functional links between system compo-
nents. A high cohesion is preferred in high quality system design.

• Complexity: indicates the degree of intricacy exhibited by the system.
• Coupling: describes how deep the system parts are interdependent. Sometimes a

lower coupling allows a higher quality of design. For sure it affects the com-
plexity, maintainability and reusability of system.

• Maintainability: it indicates the degree of difficulty and, eventually, the time
required to change the system design or its implementation to be adapted,
corrected, or to prevent some undesired effects.

• Reusability: it defines how easy and fast the system design or implementation
can be reused.

• Stability: in case of undesired changes of the software, this is the measurement
of the risk of getting some unforeseen effect.

• Testability: is the availability of a given application to be tested and, somehow,
the capability of tests to interact with the code to detect critical imperfections.

• Understandability: it measures how deep the stakeholders can understand the
system specifications.

Those properties could be even considered in case of hardware, in connection with
some other ones. Priority might be different. Complexity, maintainability,
reusability, stability, testability are surely required in hardware design. Cohesion
and coupling are usually investigated as an assembly capability and integration,
although, in smart systems, coupling is specifically referred to the energy conver-
sion mechanism. Understandability turns out into the degree of simplicity of the
proposed layout.
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An interesting issue is the tool chain exploited in software engineering. It might
look like the sketch described in Fig. 10.4. A first environment should connect the
data repository, the requirements and the functional models of the system.
A dedicated environment may be set up to perform the V&V. It includes metrics,
thresholds, and checking procedures, eventually by sharing data and interoperating
with other specific environments aimed at performing some detailed analyses and
model checking.

Those approaches demonstrate how the SE and its tools could be used to define a
roadmap for the V&V process, and provides some objects to implement this ac-
tivity, as diagrams and models, which concur with simulation and tests to perform a
complete review of the system features. Moreover, the capabilities defined by some
architectural frameworks may be used as a reference target, to check whether the
product modeled and manufactured fits the requirements and the customer needs.

10.4.2 V&V in Hardware Engineering

The V&V process of material systems was widely discussed in the literature
because of some intrinsic peculiarities of product, which are related to its physical
nature, in contraposition to the digital artifacts of software engineering. A strong
interaction between design, manufacturing, integration and assembling is usually
experimented. This makes sometimes rather difficult identifying a straight path to
complete the two actions of verification and validation.

Main goals. Definitions of V&V agree with those previously recalled, since in
material system development the verification process must confirm that the product
design synthesis provides a physical architecture which satisfies the system
requirements, as the validation process must demonstrate that the manufactured
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system satisfies the customer and fulfills his needs. All relevant issues are con-
sidered, mainly safety, cost, quality and performance. Moreover, a full requirements
allocation is a first target of the verification activity as well as the overall trace-
ability check.

Verification tasks. According to the literature four main activities are foreseen
to proceed with the system verification (Defense, 2001) i.e. the analysis, inspection,
demonstration and test. Calculated data and experimental test outputs obtained on
subsystems and components are exploited by analytical models and techniques to
predict the system performance, together with numerical modeling and simulation,
to perform the analysis. It is often associated to some visual examination of parts,
components and subsystems to check some design features in inspections made by
operators. A full demonstration of requirements fulfillment is often done on sub-
systems, components and parts, for a preliminary identification of the overall per-
formance, but tests are finally used to get detailed data and to complete a better
verification of system design. Demonstration and tests should check that some Key
Performance Indicators fit requirements. They should be verifiable and measurable
being crucial in system behavior.

Those actions are organized with a suitable verification process. An adapted
version of the IEEE 1220 standard was proposed by the Department of Defense of
the USA, to be applied to the hardware as herein schematically resumed.

Once that the design synthesis is ready, following steps are performed:

1. Selection of the verification approach (input: Design synthesis)

a. Definition of analysis, inspection, demonstration and tests
b. Definition of procedures for given V&V environment.

2. Conduction of the verification evaluations (inputs: requirements, functions and
architecture)

a. Verification of the architectural completeness
b. Verification of functional behavior and performance
c. Verification of constraints satisfaction.

3. Identification of variance and conflicts (inputs: outputs of previous steps)

a. Feedback to requirements and design synthesis

4. Assessment of a verified physical architecture (final synthesis)

a. Definition of the configuration control
b. Specifications and configuration baselines
c. Assessment of the product breakdown structure (PBS).

Validation tasks. The verification process is then followed and somehow inte-
grated with the validation activity. A clear example is provided by the ASME V&V
10.1 Standard, being illustrated in Chap. 3 (Figs. 3.3–3.9). Basically three action
lines are foreseen. The system is first an object of abstraction, in a preliminary
concept design, which is widely supported by the MBSE tools and languages. Path
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bifurcates then and a numerical modeling activity is performed in parallel with a
physical modeling.

The numerical one includes the composition of a mathematical model, being
then transformed into a numerical model, ready to be simulated, in order to com-
pute and store the results. The physical modeling activity starts with the con-
struction of a mock-up, experiments are then set-up, and tests are performed.
Measured results are collected and stored.

The verification process described in previous section applies to some issues of
this workflow. It checks first the consistency of code used to numerically model the
system. A cross check is then performed between preliminary computations and
experimental tests executed on parts and components. The numerical calculation is
verified by comparing the results of different analyses (analytical and numerical for
instance). The system performance and the compliance with requirements and
specifications are finally verified by simulating the system and running some pre-
liminary tests. The validation consists in a precise correspondence between
numerical results and experimental evidences obtained on the system prototype by
simulating some operational conditions.

10.5 A Methodological Approach to the Industrial
Product V&V

The physical nature of the hardware product makes longer and somehow more
expensive in terms of time, resources and cost, the V&V, but actually it makes it
clearer in its contents, being a material system to be integrated and operated.
Nevertheless, some words like compliance, performance, completeness and satis-
faction appear less intuitive and clear, as soon a practical activity on a real system is
faced. Therefore, some additional details are herein proposed to clarify better, from
an operational point of view, few and basic concepts just behind those keywords.

10.5.1 Practical Issues in Product Development
and Relation with V&V

To give a comprehensive answer to the open question about the practical meaning
of the keywords above mentioned, details of the system analysis, design and
development are needed, as for instance Wasson (2006) describes in his textbook.
To convert the main contents of the V&V methodology into some practical and
appreciable tasks, it is suggested to interpret the engineering of systems as a set of
three actions, namely verification, validation and documentation. To convert into a
practical approach to V&V, those actions can be roughly explained as follows,
although they were precisely defined as it was above mentioned by the Standards.
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Verification, at the end of words, should investigate whether the product
development effectively assures the system integrity. It means that requirements,
being expression of needs, must be manifested in the system product and service
(design, manufacturing, operation), completely and even always in the same way,
without any kind of mismatch between different steps of development. The con-
sistency of the flow described in Fig. 10.1 is somehow checked, as in a latin text the
so-called ‘consecutio temporum’ of verbs.

Validation should investigate the acceptability of the system, i.e. its operational
utility, suitability and effectiveness. Those are the criteria of customer satisfaction,
together with a nice perception of product as an expression of innovation and user
friendliness, somehow coupled to some appreciable aesthetics and a compatible
cost. This explains why a clear business model should be defined about the product,
to be able then of validating the system.

To complete the system development and to reach that satisfaction, the docu-
mentation delivered should exhibit a high quality, in terms of understandability,
completeness and correctness, as well as the process, which should allow a reliable
and predictable replication of the product in each copy of the system, within the
performance constraints. This task is greatly helped by a model based approach,
since the generation of documentation naturally descends from the modeling items
of the whole system.

Those interpretations nicely fit the deployment of the system development.
Practically speaking, after that needs are defined and specifications are written,
designer should interrogate himself to know whether the right system was specified.
As soon as from specifications the analysis, design and development are performed,
question should become whether the system was built right, and then, when the
system is deployed, the last question should be whether the right product was built
up. In this sense an agreement with contents of previous sections is realized, but
three main remarks could be introduced.

As it is easily understandable a tight cooperation among acquirer, user, system
developer and service provider is strictly required. This motivates the pervasive
activity currently done through the SE to connect all of those actors together and
continuously, and to take care of the after marketing, through, for instance, the
remote service and monitoring provided by the Internet of Things (IoT) and related
technologies. All those actors were even located in the sketch of Fig. 10.1. It is
known that the customer defines the needs, which are exploited as an input for the
elicitation of requirements. Two points of view are considered. As an acquirer, the
customer is interested in some capabilities of the product, eventually screened by
means of the architecture frameworks. The user is prone to define and look for
some functions. Development reaches the step of integration with a suitable support
of all the suppliers, while the accreditation is made by a certification authority.

The V&V is an iterative action, which allows a continuous refinement of
products, particularly when a product line is considered and the model based ap-
proach is applied to its development. Those details intrinsically define the product
baseline as a series of activities which might be associated to different states of the
product along its development. This brings to define the system in different
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manners, step by step “as is designed”, “as is verified”, “as is built”. Moreover it
clearly states the existence of a configuration development, which includes some
changes, to be motivated, authorized, tested and managed, through a suitable
control, as it is briefly described in the next chapter.

10.5.2 Workflow of V&V

Some basic concepts about the V&V were above expressed, but some doubt may
arise about the time at which actions should be performed and how, without a
workflow. It is tentatively described in Fig. 10.5, by resorting to the literature and
some current implementations. The sketch represents a generic documental ap-
proach, but a conversion into a model based solution is easily made, through the
MBSE. It links actors, steps and outputs of each development phase, and somehow
defines the strategy of V&V applied.

A first milestone is the System Performance Specification (SPS). This document
follows the customer needs identification and a preliminary elicitation of require-
ments, related to the operation and mission of the system. It is a matter of
assessment and negotiation with the acquirer, or directly with customer, when they
are undistinguished. This action leads to a commitment, being signed in form of
contract, for a direct procurement. The redaction of this document is expressively
helped by the architecture frameworks and related views and system capabilities.

As soon as the contract is ready, the core activity of system engineering and
development starts. For this task the methods, process, tools and models of the SE
are applied. Particularly, V&V activities are included. If the decisional activities are
concerned, some supports can be identified in analyses, trade-off’s, functional and
numerical models, simulations and prototypes. A tight collaboration with the user,
or directly with the customer, when undistinguished is required.

The system verification is based on a Developmental Test and Evaluation
activity (DT&E), while validation shall be based on the system Operational Test
and Evaluation (OT&E). Basically, analyses, inspections, demonstrations and tests
above mentioned are performed by resorting to some virtual and physical models of
subsystems, components and parts to lead the system integration.

All typical issues of product development are verified in an ordered sequence of
actions, which may be associated to some dedicated documents. In these activities
the system developer checks the progress of development, the maturity of system
and of selected technological solutions, the integrity in terms of traceability and
allocation of requirements, and the risk of failure of the decomposed system, at least
preliminarily. Some main technical reviews (MTR) and traceability audits (TR) are
therefore performed in this step. A milestone is met, when the critical design review
(CDR) is made. It allows setting up the testing, as some test readiness reviews
(TRR) check. A first campaign of system verification tests (SVT) is performed and
results are acquired, even through two dedicated audits, one aimed at investigating
the system functionality (FCA), for a given configuration, and another one by
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checking the architecture associated to the physical layout (PCA). As a second
milestone the system verification review (SVR) provides a final synthesis. This
assessment is performed with a contribution of suppliers, when required. It allows
starting the final production to deliver the system, to be deployed in service and
finally accepted by the customer.

The acceptance concerns the validation. It is promoted by the system developer,
performed under the control of a recognized authority and provided to the customer.
Tests and evaluation apply to the whole system and its operation. Any eventual
discrepancy with specifications are highlighted in a report (DR), followed by a
number of corrective actions (CA) for a definitive integration, before delivery (FI),
compatible with customer satisfaction.
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Fig. 10.5 Example of V&V workflow applied to the software development
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10.5.3 Design Objectives

As in the software, several design objectives were defined to identify some suitable
criteria to check the quality of product, and even more can be found in case of a
physical product. Objectives help in identifying some views for the design activity
and a number of criteria for the test and evaluation performed during development
(verification) and in operation (validation). Several standards and books include a
complete list of those objectives, and cite their standard definitions. To make easier
reading this section they will be briefly explained and recalled.

As soon as these objectives are analyzed, it might be realized that, in many
cases, they are related to a system ability or capability. A classification allows
distinguishing the objectives, even in relation with the product design, production,
and service.

A brief list of the most cited of objectives is proposed.

Intrinsic abilities.

• Simplicity: can be interpreted as the system property of exhibiting a design, a
layout or an implementation, which can be easily understood or deployed.

• Safety: is the ability of system to work in defined operating conditions by
avoiding failure, damage or collapse, which might affect the health and the life
of people, the integrity of other systems and its own survivability. Operating
conditions have to consider all constraints of operational effectiveness, time, and
cost throughout the system life cycle.

• Security: it measures the level of system protection against any intrusion and
unauthorized access (and somehow of being tampered). About this, it is true that
this ability is more related to the software product, but current development of
mechatronic and autonomous systems makes this item strategic for the imple-
mentation in hardware systems too.

Production abilities.

• Producibility: it defines how easy is manufacturing the system, in terms of
assembly, inspection, testing and cost.

• Testability: it expresses how long a system requirement allows defining some
test criteria to be applied in testing, to measure the system performance.

Installation abilities.

• Portability: is associated the degree of difficulty found in moving the system
from one site to another one, under defined conditions.

• Transportability: in this case the capability of system to be carried out by some
transportation system is considered.
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Operation abilities.

• Efficiency: is the “degree to which a system performs its designated functions
with minimum consumption of resources” (IEEE 610.12-1990)

• Re-configurability: concerns the system ability to be re-configurated by either a
manual or automatic action to better support the mission.

Service abilities.

• Availability: it defines the level at which the system can be operated when a
mission begins, at any unknown time; somehow it describes the system readi-
ness and is associated to the reliability and maintainability.

• Maintainability: it concerns the ability to be retained or restored to a specified
condition by a maintenance action.

• Reliability: is the ability to perform a mission, with a specific duration and
operating conditions, without reaching conditions for failure or degradation.

• Survivability: is the ability of withstanding some hostile operating conditions
and to accomplish the mission.

• Usability: it describes how easily a user can learn to operate, prepare inputs, and
interpret outputs of the system (IEEE Std. 610.12–1990).

Design objectives are useful to define requirements, to describe the quality of
product, to define the metrics for the V&V evaluations. They immediately help in
understanding the real contents of the system effectiveness, being assumed by the
INCOSE handbook as a function of suitability, dependability, reliability, avail-
ability, maintainability and capability, and as a measure of how the system satisfies
the customer needs and fits requirements (Walden et al., 2015).

Those are just some of the design objectives which can be selected in the
industrial product development. Among those, some remarks are due for safety and
service abilities.

10.5.4 Smartness and Smart-Nect-Ness

More recently a number of design objectives were added to cope with the need of
updating the references to include the attributes of mechatronic systems, being
characterized by a deep interaction and coupling among electronics, mechanics,
automatic control and computer science. This field introduced a new interpretation
of the concept of smartness, interpreted as a global capability of systems to be
sensitive to the environmental changes, to elaborate a reaction and to deploy it
completely. The fast growing up of cyber-physical systems for the smart manu-
facturing (related to the “Industry 4.0” vision) requires to take care of some
capabilities of intercommunication between systems (Lee, 2008). This motivates an
enrichment of the smartness concept, toward a smart behavior associated to a smart
connectivity, or “smart-nect-ness”. In case of mechatronic smartness some abilities
were already defined, if one summarizes some main contributions of the literature,
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as is herein done. By converse, a complete list of abilities to be specifically asso-
ciated to the smartnectness is not yet available, although it is the focus of many
research activities.

Smart functions in a new system might be related to the abilities of selectivity,
self-diagnosis, self-tuning, sensitivity, shape-ability, self-recovery, simplicity (con-
cerning the energy conversion), self-repair, stability (materials, control, dynamics),
standby, survivability, and switch-ability already defined in Chap. 4, when the
elicitation of requirements was analyzed.

As it looks evident, some objectives change their intrinsic meaning when
technology evolves from mechanics, for instance, to mechatronics and to
cyber-physics. The sensitivity, for example, describes how fast and effectively the
system or the smart material reacts to an external stimulus, by resorting to a relation
of cause and effect, which might be either linear or nonlinear with the stimulus
amplitude. The self-diagnosis in piezoelectric systems expressively describes the
ability to identify a damage of material directly through the piezoelectric phe-
nomenon exploited for sensing and actuation. In new systems, remotely connected,
it could measure the degree of sensorized functions and the failure detection. The
simplicity relates no longer only to the intricacy of layout, but even to that of the
coupling mechanism deployed to make the system smart. The shape-ability is the
re-configurability above mentioned, but even more evident, being related to the
ability of changing the shape of material and system, not only the global layout.

10.5.5 DT&E and OT&E for the Industrial Product

The Development Test and Evaluation (DT&E) and Operational Test and
Evaluation (OT&E) practically enable the V&V process to detect any critical issue
in the system configuration and in its operation. To accomplish that goal, some
quantitative references are required.

To perform a validation, the system developer must define some Key
Performance Indicators (KPIs) to start the investigation, by selecting capabilities,
properties, and measurable variables so strategic that reaching a threshold for these
imposes a re-evaluation, a stop or a redetermination of the system.

In addition, some Technical Performance Measurements (TPM) are used to
detect in system operation when a risk of failure might occur, according to a
selection of probable risks, provided by a dedicated analysis, or when some safety
critical specification is overcome.

The practical T&E activity is based on the following steps:

• the system developer selects a performance parameter;
• for a defined time of operation a planned value should be fixed, together with a

profile for the measurement time;
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• a tolerance band of values is defined;
• a threshold establishes when the value is out of range;
• the variation is even measured, in terms of difference between the planned value

and the achievement to date caught in measurements.

Some estimation could help the validation activities, as well as establishing a
technical milestone to be achieved within a time period.

To perform the validation, an analytical or numerical prediction of the TMP is
plotted as a function of the system operation, either expressed in time or by phase
(Fig. 10.6). It is compared to the current trend of the TPM measured in operation,
during some tailored tests. Moreover, if a tolerance band is known, the plot is
delimited by upper and lower bounds or thresholds to define a risk area, eventually
by distinguishing different levels, with failures of increasing severity, and a fully
unsafe operation. Critical events are detected by an alarm first and by the occur-
rence of a danger, above and below the thresholds.

The Technical Performance Measurements (TPM) are linked to some metrics,
usually defined by standards, as the Measures of Effectiveness (MOEs), the
Measures of Suitability (MOSs), and the Measures of Performance (MOPs). They
are indicators defined by customer, user and acquirer together with the system
developer and somehow contained in the operational and system requirements.

Performance usually leads to a quantitative evaluation, which helps both its
definition and measurement. It is part of the effectiveness, and is usually related to
some physical parameter, like spin speed, payload, acceleration, and torque. An
example is herein proposed, analyzing the didactic test case.

Effectiveness describes “how well the system performs a task, meets an opera-
tional objective or requirement, under specified conditions” [DoD 5000.59-M
Modeling and Simulation (M&S) Glossary]. It measures the degree of mission
accomplishment of a system.

Suitability measures an objective performance, in the base of some subjective
user criterion. It somehow describes how satisfactorily a system is used, if, for
instance, the availability, compatibility, transportability, interoperability, and
logistic supportability are concerned.

TIME

TPM
UNSAFE OPERATION

UNSAFE OPERATION

RISK AREA

RISK AREA

Model predic on

Current behavior

Alarm

Danger
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Fig. 10.6 Example of
validation performed on a
Technical Performance
Measurement (TPM)
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10.6 The Role of RAMS in V&V

Safety and security are so important that a specific branch of engineering, namely
the safety engineering, is found in education, literature and even in industrial
organization. Safety needs to be defined against a set of failure modes, and, for each
one, the uncertainties related to the inputs of design (material properties, loading
and operating conditions, real constraints and interfaces), the approach followed in
the calculation of design parameters (method, assumptions, procedures, computa-
tional errors and approximations), and other unknown effects, is covered by
introducing a suitable margin, referred to as “safety factor”. It is related to a specific
design parameter, and usually is defined as a ratio between the numerical value
required to reach the failure condition and the one describing the operation level. In
structural design, for instance, the yielding stress leading to access to the plastic
behavior of material is compared to the maximum stress occurring within the
system and their ratio is computed to assure that is suitably higher than one.

It is worth noticing that SE and the methodologies described in this handbook
were mainly conceived to prevent the risk of unsafe system operation and man-
agement. In many applications, often described as safety critical, the failure modes
associated to the risk of unsafe service are the main objectives of requirements and
needs. Safety is strictly related to some other abilities as the Reliability,
Availability, Maintainability, which all compose the so-called set of RAMS, being a
specific target of analysis.

10.6.1 Reliability

The prediction of failures and of their effects is a key target of the reliability
analysis. The failure is known as “event or inoperable state, in which any item or
part of an item does not, or would not, perform as previously specified”
(MIL-HDBK-470A). The severity of failure affects the system operation. A critical
level inhibits to achieve the mission goal, may lead to a permanent damage or even
to a complete collapse of the system or of some component. A degradation of
performance decreases the quality of service, increases the risk of collapse, but
allows continuing the mission, within a certain margin of acceptability.

For a given set of mission profile, use cases, and scenarios, the reliability
analysis is performed by calculating some typical values. It is known that systems,
after an initial period of time in which the failure rate could be fairly high (k), are
characterized by a decreasing of failure rate, which remains constant for a certain
time, quite long with respect to the life, before growing up as soon as aging effects
are suffered. This behavior is typical of many industrial products and corresponds to
the paradigm of bathtub curve.
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Knowing the failure rate, k, of each component is required to design the
whole system. Nevertheless, a probabilistic approach is applied to predict the
system reliability, R(t), as a function of time, t, and of the probability of failure in
time, Pfail as:

R tð Þ ¼ 1� Pfail tð Þ ð8:1Þ

Particularly, if the failure density in time is f(t) and is linked to failure rate
through an exponential law of time, the system reliability is related to the failure
probability, F(t), within a given time period t0 – t1, as follows:

R tð Þ ¼ 1� F tð Þ ¼ 1� Zt1

t0

f tð Þdt ¼ 1� Zt1

t0

ke�ktdt ð8:2Þ

Reliability allows evaluating the hazard rate as “the conditional probability
density that the system will continue to perform its mission within specification
limits, without failure through the next time increment (t1 + Dt)” (Wasson, 2006)
as:

h tð Þ ¼ f tð Þ
R tð Þ ð8:3Þ

in case of exponential law of failure and negative exponent.
The mean failure rate, l, is calculated to investigate the frequency of system

failure. It corresponds to the mean value of the cumulative failure probability density
function and is expressed as the reciprocal of the Mean Time To Failure (MTTF):

l ¼ 1
MTTF

¼ MTBF �MTTR ð8:4Þ

being MTBF the Mean Time Between Failures and MTTR the Mean Time To
Repair. Those numerical values define the operation condition of the system with
respect of the occurrence of failures and are objects of the analysis. Moreover, the
overall reliability of a system is calculated by analyzing its architecture and
inputting the reliabilities of components, organized into a network of series and
parallel connections, by knowing that the equivalent reliability of a series of two
components is the product of reliabilities, while the equivalent reliability of a
parallel of two components is the difference between the sum of reliabilities and
their product.

10.6.2 Maintainability

The maintenance of systems can be preventive and periodic, if it is scheduled to
avoid that failure occurs or that performance degradation is so severe that might
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have an impact on the system behavior. Prevention can be done through a
Condition-Based Maintenance (CBM), which resorts to a monitoring activity to
detect a potential failure. A corrective maintenance is unscheduled, is applied after
the failure occurrence and usually requires to remove and replace some
components.

To evaluate the maintainability of system, some parameters are calculated. The
Maintenance Down Time (MDT) describes how long the system will be out of
service and is the sum of Mean Active Maintenance Time (M*), Logistic Delay
Time (LDT) and Administrative Delay Time (ADT). The Mean Corrective
Maintenance Time corresponds to the MTTR. Therefore the failure rate can be
interpreted even as a Corrective Maintenance Frequency.

The Mean Time Between Maintenance (MTBM) reveals the maintainability of
the system and is related to the frequency of preventive maintenance fpt:

MTBM ¼ 1
fpt þ 1=k

ð8:5Þ

10.6.3 Availability

The above definitions allow realizing the meaning of availability of the system.
Particularly, some reference times are computed to investigate this objective. The
system Operational Availability is A0:

A0 ¼ MTBM
MTBMþMDT

ð8:6Þ

and compares the time between two maintenance actions (MTBM) and the sum of
this and the down time (MDT). The real Achieved Availability, Aa, is found as:

Aa ¼ MTBM
MTBMþM� ð8:7Þ

where the Mean Active Maintenance Time is introduced (M*), while the Inherent
Availability, Ai, is:

Ai ¼ MTBM
MTBMþMTTR

ð8:8Þ

10.6.4 FMEA and FTA

The RAMS analysis is performed in the industrial product development as a crucial
step of the design and V&V activities. In safety critical systems, the benefit
introduced by the MBSE is greatly appreciated. According to a fairly traditional
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approach the RAMS analysis is started in an advanced step of system development.
Typical tools are the Failure Mode and Effect (Critical) Analysis or FME(C)A and
the Failure Tree Analysis or FTA. The first one investigates through a qualitative
analysis, for each element, the failure modes known. Each one is related to its
effects and causes, as in Fig. 10.7. A comprehensive overview about failures due to
a misuse of the system is provided, but a clear identification of the failure propa-
gation and of system reliability is poorly achievable. The FTA is more suitable for
this activity. It analyzes the network of components interconnected and allows
identifying the probability of occurrence of a certain event, if it is known at local
level, for each component and device (Fig. 10.8). A failure path can be even drawn.

The main drawbacks of those tools are that they were not conceived to be
connected and integrated with other models, like the functional and numerical ones.
They are applied fairly late in the development and provide basically a qualitative
output, with some numerical details. This means that they are poorly useful in
defining the related requirements, without iterating the whole process.

The MBSE approach helps in developing the FMEA and FTA, once that BBD,
IBD and Package diagrams are derived and Behavioral Diagrams are drawn. States,
activities and sequences suggest several elements to fill the FMEA tables and to
analyze the FTA. In fact, this is just a small contribution.

10.6.5 Dysfunctional Analysis

It is possible to anticipate several analyses concerning the RAMS in an early stage
of the system project. This is a consequence of a preliminary analogy which may be

COMPONENT FAILURE MODE EFFECT CAUSE

Who ?

How ?

What ?

Why ?i

F.M.E.C.A.

Fig. 10.7 Example of FMEA
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seen between the product development and the safety analysis. To introduce this
analogy a preliminary description of the rationale applied to the Model Based
assurance of safety is proposed.

As in the system development the functional analysis is a starting point for the
activities of drawing the Functional (FBS), Logical (LBS) and Physical Breakdown
Structures (PBS), a non-functional or dysfunctional analysis is performed by Safety
Engineers to investigate the failure conditions as dysfunctions. This belongs to the
Functional Hazard Analysis (FHA). A second step allocates on the system elements
(parts, components, subsystems) some reliability requirements as a target to be
achieved. Finally, the system reliability is predicted, once that the overall archi-
tecture is defined.

As it may be easily perceived, there is a perfect analogy between the two
activities if they are compared each other. The FHA can be promoted early in the
system definition, as the functional modeling starts. This helps in performing a
screening of critical functions, in terms of safety or RAMS’ issues, since the
concept design, although the neighborhoods of the system are quite roughly drawn
(as in the first picture of Fig. 10.9). As soon as the logical layout is growing up, an
immediate correlation with some target reliability can be stated and the system
looks more intelligible. Finally, when the Product Breakdown Structure is assessed,
several requirements in terms of safety and reliability are already known and the
selection of commercial products to compose the system assembly looks already
driven. This implies a better system integration, being the RAMS issues defined a
priori more than checked only at the end of process. Once that those actions are
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SUBSYSTEM “A” 
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SUBSYSTEM“B” 
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COMPONENT 
“A1” – RA1
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Fig. 10.8 Example of FTA
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completed a final prediction of the overall reliability of the system is performed. All
the information related to that activity concur then to draw the FMEA and FTA and
other outputs, according to the Standards applied.

10.6.6 Integration of RAMS and Numerical Simulation

Benefits of the MBSE can be easily appreciated in case of safety and reliability
engineering applied to complex systems. Instead of performing a screening of
reliability issues, through some tools like the FMEA and FTA, just after having
assessed the final layout of the system, it is possible to include the failure modes
and even the probability of their occurrence in the numerical simulation of system
models, to test the overall system performance. The system nominal behavior is first
analyzed and it corresponds to the case in which no failure ideally occurs. Some
failures can be then activated, by setting some specific variables, being suitably
introduced within the system simulator, to check the transient response of the
system in presence of dysfunctions.

This approach allows investigating the role, influence and effectiveness of dif-
ferent failure modes before prototyping the product. As a result, the system inte-
gration may be performed with a deeper knowledge of the intrinsic role of each
component and it allows defining several requirements for the whole product
development. Transition between the Logical Product Breakdown and the Product
Breakdown Structure should be better driven and somehow more effective.

This approach is currently under development, but a process was already pro-
posed and assessed for several applications (Garro & Tundis, 2015), as it was
formalized for instance by the so-called RAMSAS method (Tundis, Ferretto, Garro,
Brusa, & Mühlhäuser, 2017). The workflow is sketched in Fig. 10.10. Four actions
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Fig. 10.9 Impression of the analogy between functional and dysfunctional modeling in MBSE
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are performed in sequence. A preliminary activity concerns the Reliability
Requirement Analysis and needs as an input the system model and requirements,
respectively. It produces a list of Reliability Objectives. A real System Modeling is
then started. It resorts to the system model and includes the reliability objectives as
a matter of investigation to create an extended System Model, suitable to perform
the Reliability Analysis. It is used to run a Simulation, which includes even the
Reliability Objectives and gives some Simulation Results. Finally, Simulation
Results and Reliability Objectives are assessed, to provide some Design
Suggestions and a Reliability Analysis, through some dedicated Reports.

10.7 V&V Peculiarities of the Proposed Test Cases

10.7.1 Didactic Test Case: V&V Issues

A complete implementation of the V&V process for the two proposed test cases
looks somehow unpractical and rather difficult. Nevertheless, some remarks will be
developed to make easier a straight association of the above described concepts and
their practical application. In case of the didactic test it looks interesting investi-
gating the main highlights which were defined by approaching the verification
analysis and how the validation of system was preliminarily conceived.
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Fig. 10.10 Workflow proposed by the RAMSAS methods to integrate numerical simulation and
reliability analysis
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1. The verification process could be implemented as the DoD’s adaption of the
IEEE 1220 Standard suggests. Therefore a preliminary Design Synthesis is
required as an input. It was provided by the Analyses described in previous
chapters.

If one resorts to the block diagrams, basically the system is composed by:

• A rotor, being resulting from the assembly of shaft and laying head.
• The wire rod running inside and then coiled.
• Two active magnetic bearings, with coils, housing and connectors.
• The motor, to make rotating the shaft.
• The platform, to be grounded (mechanically and electrically).
• The power amplifier, the control system (Electronic Control Unit—ECU) and

several sensors (temperature, position, rod detection, spin speed).
• An axial magnetic bearing, if required.

Those elements will be verified in terms of system integrity, i.e. as a manifestation
of requirements in components, subsystems and system, through allocation,
traceability and completeness.

2. A verification approach should be selected and applied. In this case the
Standard ASME V&V 10.1 may be suitable, because of the mechatronic nature
of the system. It states that a Design by Analysis (which resorts to a numerical
modeling of the system component) should verify the preliminary Design by
rules (analytical and parametric approaches).

To proceed with this verification tools the Development Test and Evaluation should
be preliminary defined and selected. They should support then the validation ac-
tivity, being based on the Operational Test and Evaluation. In this test case, it is
worth realizing that contents of the DT&E and after of the OT&E should be linked
to the Design Objectives, which will be shortly identified. The activity shall be
based on analyses, inspections, demonstration and tests, to be described in details.

3. The Design objectives related to this application include part of those proposed
for a generic industrial product and some more specific for smart systems.
Coming back to those previously described, some challenging issues were found
for the test case.

• Simplicity: suggests of building up the whole spoiler system as an assembly
of modules, one is the rotor conceived for coiling and a second unit should
just store the coil. This reduces the intricacy of system and makes it more
adaptable, since some solutions for the storage or delivery unit could be
connected to the rotor, depending on the steelmaking plant where is installed.

• Safety: some issues could be defined in this field. As a rotor the system
should avoid operating in regime of critical speed, dynamic instability, high
temperature, electromagnetic incompatibility, severe unbalance, plastic
behavior of material, severe wear condition or large friction, high noise,
condition of rupture and material projection, rubbing (contact between rotor
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and stator, prone to nonlinear and unstable dynamic behavior), low electrical
insulation or bad grounding, seismic excitation, large aerodynamic drag or
induced dynamic instability, high power consumption with high currents,
unstable control action, constrained operation (in presence of obstacles to
rotate for instance).

• Security: communication of operational outputs to the plant control system
should be preserved by any unauthorized access as well as commands to the
system operation should be authenticated.

• Testability: in this case each component should be preliminarily tested, the
whole system should be open to be tested and monitored in service.

• Transportability: is a key issue. The weight of the structure should be
compatible with an easy transportation, therefore modularity of rotor and of
stator elements is welcome, moreover some suitable connections should be
provided to perform the activity of suspending and moving the system and to
install it on the plant.

• Efficiency: a suitable compromise between energy consumption and
dynamics control is crucial, as well as a favorable ratio between the volume
of the whole system and the power required to treat a given amount of wire
rod.

• Availability: it should assure a continuous service during the whole time
period corresponding to a cycle of manufacturing, without a stop, and
between two maintenance actions.

• Maintainability: all subsystems should be able to be retained and restored to
service, by a maintenance action.

• Reliability: should be high for all the failure modes which might significantly
affect the health assurance of the operators or the overall safety of the
steelmaking plant.

• Survivability: it is limited to complete the coiling of material in motion from
the mill cages towards the storage.

Since this rotor is a smart system, several objectives related to the smartness should
be considered. It is worthy noticing that they could be expressively adapted to this
case as follows.

• Simplicity: in electromechanical coupling the magnetic field generated by coils
assures an effective interaction through the gap between rotor and stator, the
architecture of coils is simple and optimized to reduce the flux leakage.

• Selectivity: the rotor spin speed should be adapted to the speed of wire rod,
imposed by the rolling mill.

• Self-diagnosis: the detection of rod presence inside the canned rotor shaft is a
task of the diagnosis to be performed as well as the measurement of temperature
and unbalance.

• Self-tuning: after a preliminary centering the system provides balancing.
• Sensitivity: actions of suspension are linearized to allow a simpler control.
• Shape-ability: it might be considered the option of a variable shape for the head

nozzle.
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• Self-recovery: if currents are too high the shutdown shall be automatically
performed on some bushings.

• Self-repair: suspension and rotation will be possible even after a shutdown.
• Stability: it applies to the dynamics of controlled rotor.
• Standby skills: constant spin speed and standstill configuration are allowed.
• Survivability: vibration, instability, severe unbalance, heating and accidental

stop of rod delivery are prevented and effects overcome.
• Switch-ability: to reduce the consumption and risks associated, the power

amplifier work in switching mode condition.

4. According to the process proposed, the next step includes a preliminary defi-
nition of analyses, inspection, demonstration, tests. The Design Synthesis
includes a preliminary model of control rotor, based at least on an analytical
approach, with few degrees of freedom as it was described in previous chapters.
This model allows predicting the critical speeds, the unbalance response, the
dynamic instability and some the relevant structural damage conditions, leading
to a material plastic behavior or rupture. This model requires some inputs like
the system mass, inertia, stiffness, damping, weight, and unbalance condition.
Control system parameters are calibrated to implement a defined strategy. Power
amplifier is designed to operate as is required by the switch-ability targets.
Those issues suggest a list of analyses and tests to be performed in the DT&E.

5. A complete description of the analyses, inspections, demonstrations and tests is
intimately related to the different levels of system elements (parts, components,
subsystems and system) and to the different tasks of the verification procedure
(architectural completeness, functional behavior and performance, constraints).
A brief overview is herein proposed, although a complete project, as the didactic
case might be even considered, should be deployed through a very extensive
description.

• Component DT&E.

To understand what kind of tests should be performed, the designer looks at the
different analyses. The whole system shall be verified in terms of static and dynamic
behaviors, in different states, being described by the State Machine Diagram.

The lift-off in case of active magnetic suspension is first accomplished. This
requires that a verification of the system weight is performed and of the real
effectiveness of the magnetic actuators. The virtual prototype of the rotor shaft and
of the laying head should be used to estimate mass, inertia, weight and volume.
They could come from the CAD model, but a direct measurement of weight and
inertia should support this verification task. The first one is usually performed by
weighing the structure, while a pendulum helps in measuring the polar inertia of the
components. The balancing equipment is then used to detect the real condition of
unbalance of components and whole rotor.

Stiffness and structural damping of the rotor shaft can be predicted by compu-
tation, but the real thrust of magnetic bearings should be verified by measuring its
action on a dedicated test rig, built up after assembling of each device. The control
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effectiveness on the actuation provided by each bearing is tested before that the
whole system is composed.

The standstill configuration requires a preliminary centering of the shaft to be
sure that each bearing suitably measures the error between the target position and
that reached in whirling. This activity is associated to a check of the resolution of
position sensors, which must allow a sufficiently precise location of the rotor shaft
within the bearing housing to start the control action effectively. This is a matter of
the whole system validation, but a preliminary test of centering capabilities should
be performed in each bearing.

The start-up with rotor acceleration needs a complete knowledge of the electric
motor performance as well as of all the numerical inputs of rotor above mentioned.
A full characterization of the electric motor selected for this application is therefore
included among the development tests. Accelerating the rotor might cause a severe
condition of stress. This requires a verification of the stress distribution in com-
ponents and connections, which leads to consider the whole system, as it shall be
shortly described.

Similarly, in self-centered configuration and supercritical speed rotation the risk
of yielding and rupture should be checked as the dynamic instability. The last step
of decelerating the rotor, being usually performed by removing the torque of the
electric motor, should be tested and numerically predicted, to avoid rubbing and
other phenomena.

• System DT&E.

After a preliminary verification of components, the assembly is then analyzed and
tested. In this case a double activity is promoted. An analysis based on some
numerical methods is usually applied to investigate in detail the overall behavior,
while the real response of the system is tested in validation. Both lead to some
demonstrations.

A preliminary demonstration of feasibility for manufacturing of the whole sys-
tem is given by resorting to a virtual prototype. It can simulate the assembly
operation, by composing the system starting from the separated modules. This
action should be completed in the geometrical modeling, before than a numerical
simulation could be run. Particularly, the geometrical model is imported, for
instance, into a Finite Element code to investigate the detailed distribution of stress,
strain, displacement and rotations of the structure, when rotating or under a heating
condition, or in acceleration. This analysis differs from the design by rules, since the
model based on concentrated parameters is usually insufficient to describe the local
behavior of materials, which may be investigated only once that a preliminary
exploration of the system dynamics is performed and the details of the stem
structure are defined. Moreover, a detailed dynamic analysis could be done by
resorting to the multi-body dynamics modeling. It is suitable to describe the actions
exerted by the subsystems, to investigate the system dynamic behavior in time and
detect the actions, or the effects of critical speed, unbalance, electromechanical
coupling and instability. If the contact between bodies is modeled and friction is
considered their effect on the system behavior is also analyzed. Some additional
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analyses could include, in this example, the drag of air and eventually its damping
effect. To perform this investigation it is required introducing some tool dealing
with the computational fluid dynamics (CFD) in connection with the other analyses.

The multi-body dynamics code can be exploited as the main tool for a com-
prehensive heterogeneous simulation, to verify the requirements, as, for instance,
the capability of shaping the wire rod, within a defined time, provided that the wire
rod is preliminarily modeled and even fully characterized by some tests, aimed at
identifying its mechanical and physical properties.

• System OT&E.

The final validation of the system is usually performed on the prototype. A number
of tests is applied to demonstrate the correspondence of each prediction with the
real behavior of the system, its components and its materials. Basically, all the
states, activities and sequences foreseen by the SE models could be used to define a
complete list of tests. In present case all of states are gradually tested and the system
is usually operated up to the maximum values of speed, acceleration, and tem-
perature, into a safe and closed environment, to demonstrate its limits.

6. Inspections were a little bit neglected in previous description. Nevertheless, they
could be crucial, especially when the integration with a main system is required.
In the didactic test case some inspections allow realizing some critical issues of
design. The main object of observation is the steelmaking plant. A platform
connects the system to the main plate. The connection system consists of
threaded fasteners. Vibration of the rolling mill in operation is highly suffered by
those screws, therefore the risk of fatigue and fretting fatigue is high. This
suggests to assure a stable connection, by reducing any clearance and fatigue
effects.

Grounding might be another problem. It is required to insulate perfectly the housing
of magnetic bearing to avoid any short-circuit or even to prevent the risk of fire.
This is even important for connectors. Actually, some typical connectors used in
power electronics are not standard in case of harsh environment exposed to the risk
of fire. Inspection looks useful in realizing that, since many other devices exhibit
special connectors, preserved against the risk of fire.

Moreover, this inspection reveals that the rotor shaft might be inadequate
without a canned rotor configuration, in which a inner layer is in contact with the
wire rod, but any contact with the coils is inhibited.

A short visit to the plant control system tower could reveal that the tools used to
monitor the plant and the manufacturing process are based on some signal acqui-
sition which covers a wide range of frequency and alarms are set on quite precise
values. This remark, for instance, affects the selection of sensors resolution to make
compatible the monitoring services and the detection of anomalous behaviors.

To summarize the V&V issues applied to the didactic case a sketch is proposed
in Fig. 10.11.
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Fig. 10.11 Creative impression of the V&V process applied to the didactic test case
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10.7.2 Industrial Test Case: The RAMS Analysis

The industrial test case shall be here briefly introduced to discuss the implemen-
tation of the RAMS analysis. This system is critical in relation with the strategy of
boots actuation and affects the efficiency of the ice melting. If the ice layers are thin,
the inflation of boots may be ineffective, because of the flexibility of ice, while, if
the ice is thick, boots may be unable to break the layers. To assess a suitable
control, the designer should investigate the system process both in nominal and
failure conditions. Basically, the functional and dysfunctional analyses are required.

According to the process above described, the Reliability Requirements Analysis
is performed as a first activity. This task requires that the design synthesis is
available and the system layout is known. Moreover, some ice accretion profiles are
used to verify the system. They are defined by some regulations, as the Certification
Specifications of the European Aviation Safety Agency (EASA, 2017). The
accretion profiles are directly related to the flight environment. Particularly, the
Static Air Temperature (SAT), a Mean Volume Diameter (MVD) of droplets and a
Liquid Water Content (LWC) of the clouds are all key parameters. The Reliability
Requirement Analysis leads to the definition of some Reliability Analysis Objectives
(RAO). In this case, requirements consist in setting a maximum allowable ice
thickness over each protected surface of the aircraft, and a suitable time to perform
the boots actuation.

Considering that a limit thickness of ice layers is fixed by requirement, for
instance 20 mm, the activity of deicing system is precisely set up, by identifying a
maximum time to completely inflate and deflate the boots, being about some sec-
onds. Strategy of inflation is even important. If one boot is inflated at time, a
maximum overlap between boots inflations has to be set up. The system perfor-
mance is defined, when both the overall time to complete the activation of all boots
and the maximum power required are fixed.

It is worth noticing that those requirements just cover a nominal behavior.
However, to investigate the dysfunctional behavior a screening of failures causing
some anomalous service conditions is added. In the test case, a typical scenario of
failures may be described by analyzing the behavior of system valves. They tipi-
cally supply pressure for the alternate inflation and deflation of deicing boots, by
following a specific sequence, provided by the system controller. Each boot is
divided in two chambers, therefore the related valve inflates a compartment and, in
the meanwhile, deflates the other one. The mechanical components of this valve are
basically spools, springs and retention screws. They assure a fairly high degree of
reliability. Their failure conditions are associated to fatigue and wear. Therefore,
they should appear in the latest part of life. By converse, the valve actuation is
based on electromechanical actions, through a magnetic field generated by some
coils, and is imposed by an electronic control system. Those components exhibit a
lower reliability. Failure of either the coils or of the control switches is critical in
three cases, i.e. when the valve remains completely closed, always open or it opens
and closes only partially. In the first two failure modes, the valve is stuck in its
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initial position or it reaches the rest configuration, under the effect of springs. The
impact on the deicing efficiency is the same. The boots remain either inflated or
deflated, therefore no action is applied on the ice layers. When the valve partially
works and is never completely closed or open, deicing capabilities are exploited,
but their performance is degraded.

Those reliability objectives can be assessed through the numerical simulation
(Tundis et al., 2017). The occurrence of failure conditions can be taken into
account. The System Modeling phase is consequently performed. Nominal and
dysfunctional behaviors are represented by resorting to the SysML. An example of
the Block Definition Diagram (BDD) of the deicing system is given in Fig. 10.12.

Some subsystems are considered and are associated to each couple of protected
surfaces distributed over the aircraft profile. Actuators applied to external and
internal portions of wings, horizontal and vertical stabilizers and engines inlets are
all included. The actuation valves and the sensors to detect the ice complete the
system layout.

The integrated design of nominal and dysfunctional behaviors of the valve is
described through a State Machine Diagram (Fig. 10.13). The left side shows the
intended behavior and the regular operation of the valve corresponds to nominal
states ‘Closed’ and ‘Full Open’. The right side includes all the states which lead to
an anomalous behavior, like ‘Fail To Open’, ‘Fail To Close’, ‘Partial Open’ and
‘Partial Closed’.

The system reliability is investigated by implementing the model of the deicing
system in a numerical simulation environment like the Matlab/Simulink® as is
shown in Fig. 10.14. Several modules are created to include all the issues of system
behavior previously defined. The ice accretion, as is foreseen by regulation, is a part
of the system model, which includes all the physical components aimed to provide
the ice protection, such as the pressure regulator valve, the dual distribution valve
and the boots, applied to several surfaces of the aircraft. Each wing is equipped with
two boots, one external and one internal, closer to the fuselage. Two boots are
applied to the horizontal and vertical stabilizers, while each engine is equipped with
a single boot.

Fig. 10.12 BBD of the deicing system applied in the industrial test case (Tundis et al., 2017)
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Fig. 10.13 State Machine Diagram of the valve of deicing system (Tundis et al., 2017)

Fig. 10.14 The Simulink® simulation model of the deicing system
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The numerical simulation of the behavior of the valve is performed through a
Simulink Stateflow, depicted in Fig. 10.15. Main model inputs are the characteris-
tics of valves and boots, respectively, and some parameters of the flight mission
profile. Calculations provide the ice thickness per actuator, the ice melting rates and
the power consumption. A typical mission profile, as, for instance, is described by
the regulation CS-25 (EASA, 2017) can be assumed. It includes several phases as
take-off, climb, cruise, descent, first holding, first approach, first landing attempt,
go-around, second holding, second approach and final landing. Results are therefore
related to each phase of the flight mission. The behavior of each component is
described by some characteristic equation and related to some design parameters.
The regulator valve, for instance, is modeled through a second order transfer
function, and the dual distribution valves through a series of signal generators. The
behavior of boots is predicted by a second order dynamic system.

The Results Assessment is performed by comparing the numerical results com-
puted by assuming nominal and dysfunctional operating conditions. The ice
thickness evolution in nominal conditions is first predicted, as in Fig. 10.16. It is
immediately checked that requirements are fit, i.e. that the ice thickness never
exceeds the maximum allowed.

The failure modes previously described are then applied within the system
model to investigate the valve behavior, under different failure conditions. Since the
valve controls the air pressure supplying to the boots, when the valve remains either
open or closed, the ice removing capability is lost. As an example the failure is
assumed to occur to a wing boot, at take-off and affects the climb phase
(Fig. 10.17). For the selected ice accretion profile, the effect is severe. Nevertheless,
since the assumption of recovery capability is made, nominal conditions are
restored at the top of climb.

Fig. 10.15 The Simulink® Stateflow of the deicing system
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As is pointed out by the example, the combined use of functional and numerical
modeling techniques allow investigating the performance of the system in terms of
reliability through a well driven path, at the early steps of development and quite
deeply, if they are compared to some qualitative methods, based on FTA, FMEA.

Fig. 10.16 Simulation results for nominal behavior, without failure

Fig. 10.17 Simulation results for dysfunctional behavior (one boot inactive at take-off, then
recovered during the cruise)
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This approach looks effective, allows a high reuse of simulation models, and helps
the designer in decomposing the system complexity. Moreover, the applied ap-
proach allows integrating several issues of design, as the regulation requirements
concerning the mission profile, the system control and the failure modes.
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Chapter 11
Systems Engineering and Product
Lifecycle Management (PLM)

Abstract This handbook is mainly aimed at describing the activities related to the
ALM, applied to the industrial product coming from a material processing.
Nevertheless, a suitable integration of tools and processes with the PLM is obvi-
ously required, as is herein briefly described. A Configuration Control Management
is strictly required to track the changes applied to the developed product along the
lifecycle. This needs to build up a platform which includes the tools to be inter-
operated. Exploring how this might be done is herein proposed.

11.1 The Big Picture

The MBSE enables the designer to manage the whole product lifecycle and to
assess the configuration of the system under development. This turns out into a
systematic control of the system layout along the sequence of actions performed
during its development, by allowing, recording and motivating the changes which
are progressively introduced. Straightly speaking, the system should be precisely
identified step by step in its evolution, to assure that a unique and accessible
configuration is shared among the operators. This implies a careful assignment of
some version identifier items. Changes must be operated by authorized users, who
are allowed to access to the tool chain composing the platform for the product
development. They should be evaluated and their consistency demonstrated,
through several checks. Every change must be recorded, tracked and identified.

This need is behind the main action of integrating all the tools previously
described in a unique working environment, managed by some software tool which
implements the Product Lifecycle Management (PLM). Particularly, an effective
integration between the Application Lifecycle Management (ALM) and PLM
activities is required, and the Product Data Management (PDM) needs to be
carefully deployed. Moreover, when a SE working platform is set up to perform all
the activities already described in previous chapters, and several other ones, being
related to manufacturing, delivering, service, maintenance and disposal, a
Configuration Management Process is applied.
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Analyzing the strategy of the Configuration Control Management (CCM) allows
understanding the criteria driving the design of the platform, allowing the inte-
gration of the SE within the PLM. Requirements and specifications for the tools
composing the chain supporting the platform (or tool chain) could be even caught.

The object of the CCM is the configuration baseline of the system, and of its
subsystems. The actions of management are basically the reviews and acceptance of
requirements, design and product specifications. Particularly, once that some main
system elements characterizing the configuration are identified as crucial items to be
controlled, the real control consists in performing a continuous action of evaluation,
verification and validation of changes proposed and requested by the operators.
A goal of the configuration control is avoiding any overlap between different
versions of the product, when developing, as well as assuring the highest level of
security in the data object of the PLM. Producing the related documentation along
the system development is another key issue of this process. This activity is per-
formed by introducing some audits in the whole process, being playing the role of
milestones, and by applying a clear decision-making approach.

Those elements become the requirements of the infrastructure to be set up to
perform the system integration, through a rational digitalization, i.e. the platform of
software tools for the PLM. In this chapter, some outlines about the role of the
MBSE in the PLM, and of the interoperation of software tools at higher level to
accomplish the integration between the ALM and PLM, are proposed. A more
detailed analysis of the current methodologies can be found in some other hand-
books of this series, which focus more on the system manufacturing and on the
PLM itself.

11.2 The Configuration Control Management

Monitoring and controlling the evolution of the system within the PLM process is
the main goal of the Configuration Control Management (CCM). Policies and
procedures have to be stated at the beginning of the implementation, to select and
connect the tools. Therefore, a Configuration Management Plan is usually written.

A first action performed concerns the identification of the Configuration Items.
In this phase, the MBSE is significantly effective, since the Product Breakdown
Structure may be directly used to define, since the beginning of the product design,
the hierarchy of system components and elements. They are objects of the con-
figuration control, or items.

As the “V” and other diagrams describe, the product development foresees
several steps and those items need to be monitored, stabilized and identified in
correspondence of each one. This introduces the need for a Configuration Baseline.
The rationale of the product development is monitored and somehow captured in
several steps, to realize and characterize the configuration items. Defining steps,
milestones, or simply control points, is the goal of the Configuration baseline,
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which draws the path followed by the PLM action to make the system evolving
until that it could be manufactured and finally delivered.

Once again, a convergence between the tradition of the industrial CCM and the
tools of the MBSE could be found in this task. As the MIL–STD–973, for instance,
defines the baselines can be distinguished into:

• Functional baseline: is related to an approved configuration, whose functional
and interface properties are verified

• Allocated baseline: is aimed at demonstrating the allocation of functions to
configuration items

• Product baseline: it is associated to an approved functional and physical con-
figuration of product, defined in its configuration items.

This approach is compliant with the definition of the FBS, LBS and PBS which
describe the main milestones of the MBSE.

The Configuration Control Management is then specifically performed. It is
aimed at assuring that every change introduced is first properly identified and
documented, then evaluated in terms of the impact applied to the system and finally
approved and verified.

To define some audits, in case of material product, at least the functional con-
figuration audit could be introduced, at the end of functional modeling, to verify the
requirement allocation and traceability, and a physical configuration audit may
verify and validate the correspondence between the system “as is built” against its
configuration, when the system looks “as designed”.

To define the role of the CCM within the PLM, a sketch is proposed in Fig. 11.1.
As the SE describes, the product development in its design and manufacturing
issues is deployed from the detection of customer needs to the delivery and service.
To each step a configuration is associated. Therefore, the product looks like is
“required” first, “conceived” after, and really “designed”. As soon as it is manu-
factured, testing, verification and validation are performed. Consequently, it looks
like “planned”, “built” and as is finally “maintained” in service.

System 
development

Change 
Control 

Management

Data

PLM

CONFIGURATION MANAGEMENT AND CONTROL

Specifica�ons

List of 
requirements

Conceptual 
Design

SysML Models

Subprocess

Numerical models Mock-ups

First Changes (light 
impact)

Detailed Design V&V Produc�on

Final iden�fica�on of problems, 
solu�on, changes (high impact)

Service

Plans and 
service packages

VERIFICATION AND VALIDATION

Fig. 11.1 Sketch of the PLM process in a technical domain applied to a material product
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The most relevant interaction of the operators with the baselines is observed in
the first activity of design, where requirements are assessed and the product is
modeled, through both the functional and physical modeling techniques described
in this handbook. A sort of loop is generated, by resorting to the methodology of the
SE. Changes may be even many, but the impact is fairly low in terms of cost and
resources, while the system configuration might be significantly modified. By
converse, a second intensive change action could be performed when the system is
produced, as the quality assurance methodologies are applied or the final validation
with the customer is faced, especially in service. Problems are usually first detected,
a new solution is analyzed by the manufacturer and then proposed and applied. The
impact on cost might be large. Changes may affect quite a lot the baselines, even
when they are not so appreciated in terms of configuration, if the appearance of the
system does not change so much. If one looks at the whole PLM process, the
Configuration Control Management includes several steps, while the V&V process,
for instance concerns a few of those.

It is worth realizing that for the above described configurations and development
steps, there are some models or configuration items, associated to some data which
are managed by the PDM. Requirements are related to the systems as required, but
the functional models are strongly supported by the MBSE approach and by its
tools, as the SysML language, leading to the definition of a PBS, for instance.
Physical models, based on the numerical modeling and simulation, support the final
step of design as well as the V&V. Material and digital mock–ups are used in
production, while plans and detailed information like the bill of materials (BOM)
identify the real parts built in manufacturing. This workflow defines even the needs
of the manufacturer and how to exploit a platform to accomplish the goal of
delivery the final product.

11.3 The Platform Building

The need for an effective infrastructure is behind the implementation of the CCM
process. Basically, building up the platform requires:

• a clear statement about the workflow to be implemented, to define when and how
activities must be done and through what kind of tool;

• a unique data source, to get the required inputs, to store the outputs;
• a set of secure repositories, when data are collected and stored, by monitoring

the access and the changes;
• a bright review process, to effectively perform in development and management;
• a set of suitable criteria, policies, rules and identifiers, to control the access and

the data sharing among the operators;
• a tool chain of interoperated software.
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Those issues should need another textbook to be deeply investigated, but a brief
impression of the main topics related to an industrial implementation of the MBSE
within the frame of the PLM is herein proposed.

11.3.1 The PLM Collaboration Model

As in the SE, where at least two main models were introduced to represent the
process and the system, respectively, in the PLM a collaboration model is required
too. It defines the network of stakeholders as a number of actors, collaborating
through the network, by playing the role of customer, system developer unit or
supplier. This model describes, like in the use case diagram, the interactions,
interfaces, dependencies and tools applied to share data or to communicate. It is
used to understand the connections required into an Internet of Things service,
when used, or into the cloud, or simply within a structured network. This is a
roadmap for the platform builder, who can trace:

• the number of communicating actors
• how the network is distributed
• how large is the heterogeneity of tools used
• the need of protocols to be used to interoperate the units
• the amount of data produced and to be stored
• the need of repositories
• the spatial location of stakeholders.

This model, looking quite simple, actually is extremely useful to define a “vir-
tual co–location” of operators through the network. It is strictly required to design
the strategy of data replication (Fig. 11.2).

11.3.2 The PLM Functional View

The first audit above mentioned, concerning the functional configuration, may
resort to the results of the functional modeling performed by the MBSE, to provide
a corresponding functional view of the system. It defines both the interpretations “as
required”, first, and “as conceived” then. This largely benefits of the requirements
elicitation and refinement through the MBSE approach, along the requirements
baseline, as well as of the models described through the SysML, along the func-
tional baseline. The Functional Breakdown Structure is the reference. Similarly, the
allocation baseline prepares the second audit, focused on the physical configura-
tion, exploiting the logical analysis, first, and the physical analysis after, by
resorting to the Logical and Product Breakdown Structures.
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A linear correspondence between baselines, development steps, configurations
and their items is found, when the traceability of requirements is investigated, by
proceeding forward from needs to product, between product and needs, when the
same path is followed backward.

It seems quite obvious, but actually two important consequences are found.
A first correlation is detected between the concepts of the PLM process and the
digital products provided by the MBSE approach. This greatly enables the system
developer to clearly implement the strategy proposed in several PLM references. As
it shall be discussed in next sections, there is a similarity between the design
analysis workflow and the safety engineering analysis workflow, which can be
exploited to apply the same approach and to connect the two analyses within the
same tool chain. Items are clearly identified and even the tools to be applied are
described, thus driving to a straight investigation about the interoperability of some
dedicated software. The whole picture is defined in the same sketch, being repre-
sentative of the platform enabling this design process (Fig. 11.3). Requirements are
specified by functions, and even satisfied, functions are directly allocated to system
elements (subsystems, components, …) and implemented by those, elements are
physically implemented by parts.

11.3.3 The PLM Data Model Analysis and the Tool Chain

The structure above defined for the complete traceability of requirements suggests
of setting up a hierarchy of software tools, where a main system integrator (a PLM
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Fig. 11.2 Example of collaboration model in PLM
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dedicated tool) provides a sort of high level interface. All the operators can be
connected through it and several elements of the tool chain can be activated and
operated, depending on the degree of accessibility allowed to each user. Through an
effective interoperability this main tool should allow sharing the data with reposi-
tories and other users, and accessing to the network, but even running some ded-
icated tools for reading and updating the requirements, navigating and eventually
modifying the functional models, running the simulations, creating the digital
mock–ups and refining them.

As the SE provides the roadmap to implement the whole PLM, this software is
like a dashboard, allowing the system developers to monitor all the activities per-
formed. When this tool is requested of exchanging data with another one or directly
to activate a function, a suitable connection should be exploited. This means that
either a point–to–point connection is applied, when the vendors of the software
products already included among the options, or the communication is based on a
standard connector, for instance compliant with the Open Services for Lifecycle
Collaboration or OSLC. This enables the interoperation of tools, as it was described
to introduce the heterogeneous simulation.

From this point of view, two basic remarks should be added. Designing the tool
chain is a key feature of the implementation of the SE, and technologies available in
computer science may either accelerate or make slower the effective application to
the industrial product development. The cost is quite high, at the beginning, as a
company sets up the platform, but an immediate reuse in several projects assures
that it could be quite fast amortized.
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Fig. 11.3 Overview of the traceability of requirements and description of the Configuration
Control Management and of its items
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The model of collaborative work implemented may either enhance or brake the
platform building and affects the overall performance of the methodology applied to
a certain technical domain. Therefore, those are crucial issues for the development
of the MBSE approach and for its straight implementation.

The tool chain defines the neighborhoods of the community involved within the
development of a given product. It might be observed that the concept of virtual
square for collaboration is deployed, as in Fig. 11.4, where a network connection or
cloud services could connect each other the operators in a unique working envi-
ronment. Some main tools manage the two set of activities in ALM and PLM (this
one often includes the ALM) while each specific action is performed by some
dedicated software, handling a set of data of different type, and are connected to the
working environment through some suitable connectors.

To make effective this implementation some issues must be carefully defined:

• The strategy to integrate the software tools for the design activity
• The control action in the configuration change management
• The technical interoperation of tools
• The integration between analyses, as for instance, the connection between the

functional and dysfunctional design.

Those are the challenging issues of the practical implementation of the MBSE
and simultaneously they measure the real performance of the commercially avail-
able tools in effectively deploying the SE.
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Fig. 11.4 Integration of the ALM and PLM processes and overview on the data, analyses,
connections and tools involved
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11.4 The Tools Integration and Interoperation

A key focus in platform building is the integration between different tools in terms
of compatibility of actions and results exchanged. Moreover, the real possibility of
automatically exchange data and information should be assured by suitable con-
nections and a straight interoperability. To make an example of this activity, some
details of the integration between tools are herein analyzed.

To implement the workflow of actions previously described in the design activity
in both the test cases developed in this handbook, it was required to define the
selection of tools. The data to be exported and imported in passing from one tool to
the next one were then defined. Depending on the tools to be connected, a suitable
way to operate the connection was identified and this implied resorting to either
proprietary or standard connectors.

The tool chain used within the frame of the project to whom belongs the
industrial test case is depicted in Fig. 11.5. The IBM DOORS® was proposed to
manage requirements, after a preliminary elicitation made by the user, to convert
the information known in terms of customer needs. The requirements listed in the
IBM DOORS® are imported, in this case, into the IBM Rational Rhapsody® to
perform the functional modeling, by means of the SysML language. This con-
nection is already foreseen by the vendor, therefore it is easily set up. When the
heterogeneous simulation is run by resorting to the Simulink® simulator, a standard
connector is required to import the model and interoperate the tools, as it was seen
in previous chapters. Nevertheless, the connection is established. To manage the
models of the heterogeneous simulation in connection with other features of the
PLM process, a main PLM software tool shall be envisaged. It can be based upon
an OSLC compliant connector to communicate with the IBM Rational Rhapsody®,

Fig. 11.5 Example of integration with the PLM process of tools used for the industrial test case
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while some dedicated connections were developed by vendors and are now avail-
able to interact with the IBM DOORS® and the Matlab/Simulink® environment.

The strategy applied in this test case assumed that the IBM Rational Rhapsody®

could deserve as a main tool in the ALM activity and exchange data with the PLM
main tool This is a layout sometimes implemented by several partners of the project
used as an example. The IBM Rhapsody® plays the role of a dashboard for the
operators. Some direct and optional connections may be set up to directly read the
contents (statements and models) of the requirements manager (DOORS®) and the
numerical simulator (Simulink®), which are made already available by vendors.
When they are activated, the operator navigates and explores the numerical simu-
lation or the list of requirements, independently on the interaction with the SysML
modeler.

The effectiveness of tools integration depends on the performance of the pro-
posed workflow and specifically of connectors. Connection between tools sold by
the same vendor obviously makes somehow simpler the integration and faster the
interoperation. By converse, the features provided by different tools motivate a
careful selection and composition of the tool chain. This is the current limitation to
an effective and straight implementation of the MBSE in practice, especially in the
industrial product development.

It is true that a wide action is currently promoted by several software vendors to
provide a fully integrated tool chain, being able to interoperate the tools through
assessed connections. In the same example, the companies involved in the system
design tested another layout, being based on the IBM platform Jazz®1 and the IBM
Team Concert®, by resorting to the tool IBM Rhapsody Design Manager® to
manage the system integration. This solution, despite of some change of the fea-
tures provided by the tools, makes possible interoperating some homogeneous
tools, as they are sold by the same vendor.

In the didactic test case, this approach was applied by the PTC, who acquired the
modules to perform the MBSE as the Artisan Studio® by Atego, to create an
integrated tool as the PTC Integrity Modeler®. This action made possible, for
instance, configuring the layout described in Fig. 11.6.

The elicitation of requirements was made through the IBM DOORS® as in the
simulated industrial environment of the steelmaking technical domain, but a PTC
module could be even introduced to make the tool chain complete.2 However, the
interaction between customer, supplier and system developer is even an issue of
design of this layout, as it was there tested. The difference with the industrial test
case is that the strategy applied by the user favored a proprietary connection
between the PLM manager tool and the functional modeler, by developing some
partnerships with other vendors or simply some dedicated connectors to integrate
the requirement manager, when the proprietary module is not selected, and the
numerical simulator.

1For further information please visit https://jazz.net/products/rational-team-concert/.
2For further information please visit https://www.ptc.com/en/product-lifecycle-management.
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As it was mentioned at the beginning of this handbook, some other software
vendors already developed alternative solutions, making possible to define other
layouts. Those above mentioned were introduced as a picture of the experience
performed in the industrial implementation of the MBSE, in recent years and to give
an impression of the difficulties associated. From this point of view, they do not
reflect the latest up–to–date solutions proposed by the cited vendors, but just the
problems that gradually overcome in setting up their latest products, as they could
be also identified by the large community of industries, academies and vendors
within the frame of the ARTEMIS JU CRYSTAL project (“Acceleration of Safety
Critical Systems Engineering” 2013–2016).3

11.5 The Configuration Control Action

Once that a tool chain is assessed, a crucial issue concerns the definition of the
Configuration Control process through the tools and the steps of product devel-
opment. Particularly, a suitable sequence of authorized actions is required to assure
the overall integrity.

The source of change request may be either the designer or manufacturing teams.
In a review of requirements, the system developer might realize the need of
changing some detail in the system configuration, but even the production line
might detect a difficulty in manufacturing, assembling and integrating parts, com-
ponents and subsystems, thus requiring a different solution. Provided that a change

Fig. 11.6 Example of integration with the PLM process of tools used for the didactic test case

3Public documents and relevant results are still available on line at www.crystal-artemis.eu.
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request is formalized and sent to the system developer team, according to the
MBSE, it has to be associated immediately to the function and the requirement
which motivated the presence inside the system layout of the part under discussion.
Therefore, the request is processed through the requirements manager tool, to
identify first the associated requirement, which is allocated to the part to be mod-
ified. The impact of change has to be checked. A first action identifies the contents
of the requirement to be changed, but to investigate the consequences of change, the
ALM tool chain is used. This allows allocating the change, as the requirement was
allocated to the corresponding functional and logical blocks, in the system model,
without modifying its elements. To check the impact of this change, a functional
analysis is performed, by assuming the potential change as active, and eventually,
the related numerical simulation is even run. If this step states a preliminary
compatibility with the change proposed, it is allocated to the system parts, by acting
on those which were initially object of the change request. To check the suitability
of this change, the verification and validation process can be applied. If the result is
favorable, the change is consolidated and noticed through the PLM tools, as a
change note (Fig. 11.7).

As the above described process points out, the configuration control action is fast
and effective if a platform is built and the workflow from the needs to the product is
clearly defined and based on models to be run within some interoperated software
tools. This motivates the integration process design and an optimization of its
elements, as well as of the process itself.
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11.6 Integration Between Analyses Within the Tool Chain

11.6.1 Integration Between Design and RAMS

An additional issue, to complete the integration of the system as well as of the tool
chain used to design and manufacture it, is the interconnection between different
analyses performed within the same workflow and particularly between tools.
A typical example is the interaction between the design process, based on a
functional modeling and the safety engineering applied to the system integration,
which includes a preliminary prediction of the dysfunctional behavior.

This task allows realizing how large is the impact on the product development of
the digitalization of activities based on models, as the MBSE promotes. In this case
the rationale previously described for the design is somehow replicated, but a
different platform is set up. The challenging issue is making the two platforms
interoperating to allow, simultaneously, a reduction of the resources required to
develop the tool chain and a smart cross check of the system figures and perfor-
mances in operation through the models developed.

As it was already described in Chap. 10, despite of the tradition of performing an
investigation about the degree of reliability and safety of the system, after its final
assessment in terms of the PBS, the model based approach may help in performing
a suitable refinement of the safety requirements through a gradual investigation,
which can be associated to the design operation, step by step. Particularly, the
analogy can be found if the functional analysis performed to design the system is
associated to the functional hazard analysis (FHA) useful to identify the failure
conditions in dysfunctional behavior. As a second step, the logical architecture is
then defined in design, like some reliability and safety targets can be identified by
proceeding to a reliability and safety requirements allocation. Finally, as the
physical architecture is assessed in design, the reliability and safety conditions in
operation can be predicted, in the safety engineering process.

The workflow to transform the typical safety and reliability analysis based on
some tools like the FMEA and FTA, into a model–based approach is simply
described by the above-mentioned analogy. This helps in setting up suitable tool
chain, to be carefully connected to the design models.

In the industrial test case it was done, according to some technical standards and
best practices applied to the aeronautical domain. The Aircraft and System
Development Processes defined by the ARP 4754, for instance, may find a direct
correlation through this approach with the Safety Assessment Process Guidelines
and Methods provided by the ARP 4761. Assuming that the design activity is
performed through the IBM tools, by following the approach above described, the
requirements management may be listed by the IBM DOORS® or the new product
Doors Next Generation® (DNG), the functional modeling by the IBM Rational
Rhapsody® and the subsequent integration by the IBM Jazz® platform, through the
IBM Design Manager®. In addition, some typical tools of the safety engineering
consist in as toolbox performing the set of RAMS analyses, in cooperation with a
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data link connector. In the test case, it was for instance done by resorting to a
domain oriented RAMS analysis tool. A sketch of the preliminary tool chain tested
is proposed in Fig. 11.8. A connection module could allow joining the RAMS tool
and the Design Manager, by resorting to some OSLC compliant connector.

As a result of the construction of a interoperated working environment, the
RAMS analyses may be started early in the product development and grow up in
parallel with the system design. Moreover, it can be really based on models, more
than on some analyses whose results are collected in tables, less manageable than
the digital models for a complete allocation of functions and dysfunctions.

The benefit of this integration can be realized if the typical processes performed
by safety engineers are analyzed, as is herein briefly proposed.

11.6.2 Integrated Analysis

In case of RAMS analysis, the integration of the two platforms allows proceeding
quite simply in subsequent steps.

The functional modeling provides a preliminary Functional Breakdown
Structure, which can be transformed into a list of functions and assumed as a set of
functional blocks by the Reliability Manager tool. This one analyzes the functions
and associates a number of potential dysfunctions, by performing the Functional
Hazard Analysis (FHA) and allows a first updating of requirements and of functions
in the design workflow system (Fig. 11.9).

The architecture conceived in terms of Logical Breakdown Structure is then
transferred from the functional modeling to the reliability workflow and trans-
formed in logical blocks to analyze the reliability allocation. This allows a selection
of physical products and compiling the architecture of the physical blocks to be
transferred back to the design workflow to assess the Physical Breakdown
Structure, with reliability targets included (Fig. 11.10).

Fig. 11.8 Implementation of
the design and safety
engineering workflows in
parallel as in the test cases
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A similar integration is foreseen for other analyses and to include and connect
the geometric models of the material product. The methodology applied is even
similar, and resorts to several connectors already provided by vendors to include the
CAD and CAE tools within the PLM, thus completing the platform which fully
enables the implementation of the MBSE.

Fig. 11.9 Functional Hazard Analysis loop between design and safety engineering workflows
(sequence defined by numbers)

Fig. 11.10 Product configuration assessment loop between design and safety engineering
workflows (sequence defined by numbers)
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Chapter 12
Conclusion

Abstract At the end of this path a short resume is proposed, to define the lesson
learnt and the next work to be done to improve the expertise within the Systems
Engineering.

This handbook provides some preliminary outlines about the methodology, tools
and applications of the Systems Engineering, by introducing contents and processes
of the Model–Based approach (MBSE), especially when applied to the Application
Lifecycle Management (ALM) and to the system design. It focuses on the material
product development, as a result of an industrial processing applied to raw mate-
rials. As it was deployed along the chapters, the MBSE is implemented by means of
the SysML language and of some typical tools, to allow creating some tangible
objects to be shared among the system developers, refined and assessed, before that
a real prototyping activity is started, with evident benefits of cost and effort
reducing. The two test cases analyzed are aimed at simplifying the understanding of
the Systems Engineering methodology in its main contents and showing some
typical issues of the system design and integration, through some of the most
popular software tools exploited in this field. The practical meaning of the full
integrity of system development, based on a complete allocation of needs and
requirements to the elements of the system architecture is investigated. The trace-
ability of requirements is shown, in practice, as it is currently tracked through the
MBSE in several industrial contexts. The tools integration and interoperability
within the frame of an industrial platform supporting all the activities related to the
Systems Engineering are even described. The tool chain used in the platform allows
integrating several analyses and provides a centralized dashboard to the system
developer to have a global overview on the whole development, to be then detailed
in some specific analyses, performed through some dedicated software tools. Many
kinds of models and simulations, having different nature, are exploited to create a
heterogeneous working environment. As a main result, the MBSE allows digital-
izing the product lifecycle in all of its steps and activities. This enhances the remote
control and the distribution of information over the seas and among several
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operators for a real collaborative work in a real “glocal” context, as the current
industrial networks of partners look.

A key issue of this handbook is even clarifying the degree of technological
assessment accomplished in recent years in this specific topic, and somehow the
depth of the state–of–art. Despite of several approaches proposed in the literature,
which offer the best point view to develop the contents of the Systems Engineering,
some common statements may be herein summarized and discussed. As it is widely
remarked by several authors, the Systems Engineering allows decomposing the
complexity of some new products. It is a matter of creating the convergence of
several activities, being traditionally performed as separated tasks. A bridge
between the detailed design, based on some quantitative analyses and supported by
numerical models and data analysis, was built up to provide a model base on the
qualitative processes of requirements analysis, concept design and functional
modeling. This allows integrating those activities and leaving the documental ap-
proach to exploit the digital technologies. It could help in reducing the errors related
to the communication among humans. Moreover, the collaboration of different
technical competences and operators, used to speak different languages, was
enhanced by providing a standard and intuitive language. It supports a suitable
integration of the systems, particularly in some multidisciplinary applications, as
the mechatronic engineering. In addition, the two activities of design and manu-
facturing, still quite distinguished within the daily practice of companies, were
related by the Systems Engineering approach, because of the pervasive attention to
the verification, validation and production issues as a direct expression of the
decision making strategy applied in design. The full traceability of the whole
decision making path, applied to a product development made available in digital
artifacts, somehow overcomes some typical difficulties in transferring the compe-
tences between generations, since even some actions like the screening of available
technologies or the product concept assessment are now part of the models shared
among the operators.

Is everything done? Surely not yet, but few bottlenecks at present still inhibit a
complete implementation of the Systems Engineering. A first one is related to the
initial cost in terms of time and resources to equip the companies of such tools. As
they affect intimately the approach currently used in the whole product develop-
ment, the people are poorly prone to change their habits, although the improvement
in terms of fast return of investment is quite immediate, even thanks to the
reusability of models, tools and methodologies. In terms of technology, the
assessment of standard approaches is still going on. Even more critical is the real
interoperability between software tools. However, the innovation rate of software
tools to achieve the required level of integration within the industrial platforms and
between tools is continuously growing up. Moreover, in several technical domains
the Systems Engineering has been already assumed as the standard approach to face
the complexity.

It is really important appreciating that a suitable historical situation for this
innovation already came. The transition between some assessed approaches, known
in the technical and scientific literature, and the newest ones, to manage the design
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and production activities, includes several tasks, as the application of new
methodologies, new tools and new standards. It has to be done within a context of
people trained in several techniques, previously developed, who look more confi-
dent with those than with this new approach, especially when working within the
design of safety critical systems. In fact, the current cultural situation helps, since it
is characterized by three simultaneous transformations as well as the wide intro-
duction of the lean manufacturing, the fourth industrial revolution and the fast
growing up of technologies related to big data.

Actually those are three different items of a coherent and unique technical
evolution. The need for a lean manufacturing is pervasively moving the companies
to apply a strategic approach to the industrial production based on a systematic
reduction of costs and of waste, as for instance the World Class Manufacturing
teaches. In this approach some typical goals and tools of the Systems Engineering
are reflected. The methodology of the Systems Engineering itself enables the
product developer to reduce the cost of system development, as the processes
implemented allow to do. The World Class Manufacturing looks like a suitable
framework to be applied in production as the architecture frameworks are in the
ALM stage.

The strategic initiative of the Factory of the Future, even referred to as Smart
Manufacturing or Industry 4.0, practically promotes a straight implementation of
some enabling technologies which are tightly connected to the Systems
Engineering, which might be properly considered as a tool to apply that approach. It
can be easily demonstrated, if some of these nine main technologies are considered.

Use of collaborative robotics in manufacturing, for instance, increases the level
of intrinsic complexity of systems, to be decomposed through the MBSE. Resorting
to additive manufacturing requires a digital based modelling of product, compatible
with the methodology and tools of the Systems Engineering. Augmented reality,
which is associated to a deeper diagnosis, prognosis and monitoring of systems in
service increases the number of requirements concerning function and structure of
the systems and is strongly related to the allocation of requirements and prevention
of failures, as the dysfunctional analysis allows to predict. The role of the hetero-
geneous simulation within the global item of simulation is evident, especially when
the context is highly interdisciplinary. The horizontal and vertical integration,
aimed at connecting the customer, the supplier and the system developer, as well as
different operators within the frame of the system development, is strongly sup-
ported by the platform and the tool chain typical of the MBSE implementation. The
use of the network and cloud for an extensive collaboration and remote monitoring
of the system production and service finds in the Systems Engineering a straight
approach for a coherent design of all the services needed and even a frame where
they could be developed. The topic of cyber security surely could benefit of a
combined functional and physical modeling of systems, to prevent intrusions and
embezzlements.

A remark is here expressed, concerning the semantics of the proposed diagrams
and, in general, about the overall methodology explained. It is important to clarify
that right now neither assessed standard nor a golden rule can be applied to
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implement the MBSE design processes. This approach can be slightly customized
by the user, depending on the engineering domain, the context of analysis and the
tools used. The SysML language is a popular tool. It is implemented through
several commercial software that exhibit different characteristics. It is standardized
to provide a common representation of the model-based design. Nevertheless,
several interpretations have been found in literature, concerning the definition of
models and diagrams. This can be understood, if one considers that designers look
for a flexible tool that is able to represent straightforward what they need to design.
A considerable difference between theory and practice is found, when a real
implementation of the SysML to design some complex industrial systems is
performed.

The Reader is kindly encouraged to evaluate the application of methods and
tools here exposed, rather than of the formal correctness of diagrams, which are
surely adapted, to avoid any disclosure of industrial contents, and much more to
show a driven implementation in some real case studies, deemed as the most
important issue, in this context, by the Authors. They wish that the introduction to
the Systems Engineering applied to the industrial product development herein
provided could help in discovering the features of this methodology, by identifying
the tools currently developed for a straight implementation, and in realizing how
they should fulfill the needs of the Reader to enhance the product innovation, in the
specific technical domain covered. It should drive to focus better on some specific
topic, by resorting to the specialized literature, after a preliminary understanding of
the whole picture. Moreover, it should excite the Reader to get acquainted with this
approach, by realizing its potential impact and increasing application to several
technical fields, and mastering its main and useful contents.
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